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1 Abstract

Worum geht es hier kurz und knapp? Wie viele Zyklen gibt es, wenn man immer
wieder mit einer Zahl multipliziert und das Ergebnis dann modulo eine andere
Zahl nimmt.

Das Ergebnis dieses Papers ist, dass fiir m,n € P mit ged(m,n) die Anzahl an
Zyklen/Orbits modulo n
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ist.
Weiterhin werde ich zeigen, dass fir p € P\ {2} und m € N\ pNund k € N

ordz/prz)+ (M) = ord(z/pz)- (M) - pmax{ O.k—ko+1}

Letztlich méchte ich noch eine algorithmische Implementierung der letzten
Gleichung présentieren, die die Ordnung fiir bestimmte Zahlen sehr schnell
berechnen kann.



2 Grundlagen

Diesen Teil kann man getrost {iberspringen, wenn man die Euler-¢-Funktion, die
Primfaktorzerlegung, die p-adische Werigkeit, Modulorechnen, Aquivalenzklassen,
abelsche Gruppen, Lagranges Satz, Homo- und Isomorphismen, die Direkte
Summe und den Fundamentalsatz der abelschen Gruppen gut verstranden hat.

Hier eine Ubersicht zu der Einfiihrung:

e Die |Primfaktorzerlegung|

e Die |p-adische Wertigkeit|

Die Funktionen
Die [Euler-¢-Funktion|

o [Restklassen|

e (abelsche)

e Ein kurzer Abstecher zu

e [Homomorphismen| auf Gruppen

e |Primitive Elemente| auf Gruppen

e Die und der Satz von Lagrange
e Die und der Fundamentalsatz der abelschen Gruppen

2.1 Primfaktorzerlegung

Jede natiirliche Zahl n kann man auf eine und nur eine Art und Weise als Produkt
von Primpotenzen schreiben. Zum Beispiel

12=2%2.3

Hier beachten wir also nicht die Reihenfolge.

Das sieht dann ganz allgemein dann so aus:
n = p11)1 . pgz .

Eine Primzahl p € P hat immer den Exponenten v € N in der Primfaktorzerle-
gung, wie oft man n durch p teilen kann.



2.2 p-adische Wertigkeit

Die p-adische Wertigkeit v, einer Zahl n ist, wie oft man z durch p teilen kann.
Das ist ist das gleiche, wie der Exponent in dem vorherigen Abschnitt. Somit

gilt fiir n € N:
n = H p”P(I)
peP

Also jede Primzahl taucht genauso oft in der Zerlegung auf, wie die Zahl durch
die Primzahl teilbar ist.

Fiir v, gelten ein paar Rechenregeln:
Lemma 2.1. Fir alle a,b € Z und p € P
vp(a - b) = vp(a) + vy(b)

Wenn man a vy(a)-Mal durch p teilen kann und b v, (b)-Mal durch p teilen kann,
dann kann man a - b vy(a)-Mal und dann noch mal v, (b)-Mal durch p teilen.

Lemma 2.2. Fir alle a,b € Z und p € P

vp(a) vp(a) < wvp(b)

_ vp(b) Up(a) > Up(b)
vp(a+b) = 0p(a) falls @) = () Ap@+ faib
> vp(a) vp(a) = vp(b) Ap@H fa+b

Die Hauptaussage hier ist praktisch, dass, wenn in einer Summe die Wertigkeiten
der einzelnen Zahlen unterschiedlich sind, dann die Wertigkeit der Summe das
Minimum beider Wertigkeiten ist.

Beweis. Nehmen wir n,t € N und p € P mit v,(t) > 0
Nun gilt
0p(n) < vp(tn) = vy() + v (1)

Wenn wir nun tn + n betrachten, dann
tn+n=n(t+1)
aber entweder p |t oder p|t+1und dap |t
vp(t+1)=0

und
vp(n(t + 1)) = vp(n) + vp(t + 1) = vp(n)

O

Die unteren beiden Fdlle- méchte ich hier nicht erértern, aber man versteht sie
am besten, in dem man sich die Addition zweier Zahl in der Basis p anschaut.



2.3 gcd und lem

Definition 2.3. Fir a,b € N ist gcd(a,b) die grofite natiirliche Zahl, die a und
b teilt. (Greatest Common Divisor)

Definition 2.4. lcm(a, b) ist die kleinste natirliche Zahl, die sowohl ein Vielfa-
ches von a und auch von b ist. (Least Common Multiple)

Definition 2.5. Coprim

Zwei Zahlen a,b € N sind coprim, wenn es keine natirliche Zahl n # 1 gibt mit
n|aundnlb.

Wenn zwei Zahlen a,b € N coprim sind, genau dann gilt ged(a,b) = 1.

Lemma 2.6. Seien a,b,c € N mit a und b coprim, also ged(a,b) =1
ged(ab, ¢) = ged(a, ¢) - ged(b, ¢)

Lemma 2.7. Seien a,b,c € N mit a und b coprim

lem(ab, ¢) = lem(a, b, ¢)

2.4 Euler-¢-Funktion
Definition 2.8. Fir n € N ist ¢(n) die Anzahl an natirlichen Zahlen k mit
k <n und k und n coprim.
Lemma 2.9. Fir allep € P

¢(p) =p—1
Also alle natiirlichen Zahlen, die kleiner als p sind, haben keine gemeinsamen
Faktoren mit p, was auch Sinn ergibt, da p ansonsten nicht prim wére.

Lemma 2.10. Fir alle a,b € N mit a und b coprim

¢(a-b) = ¢(a) - H(b)
Beispiel 2.11. a =2 und b=3
Nur 1 ist coprim zu 2 somit $(2) = 1
Nur 1 und 2 sind coprim zu 3 somit ¢(3) = 2
Nun erwarten wir ¢(6) = ¢(2) - $(3) =1-2=2.
Es sind nur 1 und 5 coprim zu 6, somit ist tatsichlich ¢(6) = 2

Lemma 2.12. Firallene N undp P

¢(p") = ¢(p) "' =(p—1) - p"
Beispiel 2.13. p=3 undn =2
#(3) = 2 und wir erwarten nun, dass $(9) = ¢(3) - 3 = 6.

Nur 1,2,4,5,7,8 sind coprim zu 6 womit die Aussage hier stimmit.



2.5 Restklassen

Was ist das also? Betrachten wir ein Beispiel.

Beispiel 2.14. Wir wollen wissen, ob

VneN:n?+n+1 gerade

Dafiir, wiirde ich behaupten, miissen wir wissen, ob n? gerade ist.
Lemma 2.15.

n gerade <= n? gerade

Beweis.

Falls n gerade, also n = 2k fiir ein k € N, dann
n?=(2k)*=2-(2-%%

somit n? gerade

Falls —(n gerade), also n = 2k — 1 fiir ein k € N, dann

n? = (2k —1)?
=(2k)? —2(2k-1) +1
(2k%) —2(2k-1) + 1
2k —k-1)+1

2
2

Also ist n? eine gerade Zahl plus 1 und somit ungerade.

Lemma 2.16. Das geht auch viel einfacher

Ich wiirde postulieren, dass alles, was entscheidet, ob ein Ausdruck wie n? +n + 1
gerade ist, folgendes ist: ob die Bestandteile gerade sind.

Schreiben wir nun also n = 2 (mod 2), wenn die Zahl n gerade ist, um aus-
zudriicken, dass es keinen Unterschied zwischen 2 und n gibt, wenn wir uns
nur anschauen, ob die Zahl gerade ist, also ob die Zahl ein Vielfaches von 2 ist.
Deswegen auch (mod 2) fiir Vielfache von 2, bei Vielfachen von 3 wiirde man
(mod 3) schreiben.

Jetzt ist die Menge aller Zahlen fiir die gilt & = 2 (mod 2), die Menge aller
geraden Zahlen
(2i]ieZ}=2Z

(Es sind auch negative Zahlen enthalten)

Die Menge aller Zahlen fiir die gilt £k =1 (mod 2) ist die Menge aller ungeraden
Zahlen
{2i+1|ieZ}=2Z+{1}



Diese beiden Mengen sind die Restklassen, bzw. auch die Aquivalenzklassen
unter = (mod 2).

Notiz 2.17. Fir (mod 3) gilt ibrigens, dass 1 # 2 (mod 3). Das liegt daran,
das 2+ 1 =0 (mod 3), aber 1 +1 =2 #£ 0 (mod 3); 1 und 2 sind also nicht

gleich, wenn man sich nur Vielfachheit von 3 anschaut.

Nun die formale Definition:

Definition 2.18. Betrachten wir irgendeine Aquivalenzrelation %, also eine Re-

lation, die irgendeine Gleichheit angibt. Eine Aquivalenzrelation ist eine Relation,
die

o transitiv ist
Va,b,c:a&®#bANbxc = a=xc

o reflexiv ist
Va:a®a

e symmetrisch ist
Ya,b:a#b < b=xa

Definition 2.19. Die Aquivalenzklasse von einem Element a beziiglich # ist
[a]z={z]a=z}

also die Menge aller Elemente, die wir gegeneinander vertauschen kénnen, wenn
wir uns nur Gleichheit beziiglich # betrachten.

Beispiel 2.20.

e C mit = fir=
[z]- ={z}

es ist nur ein Element gleich zu sich selbst
e N mit = (modn)
[O]E (mod n) — nz

Wenn wir Vielfachheit von n betrachten, dann sind alle Vielfachen von n
gleich.

Was sind nun genau die Aquivalenzklassen unter = (mod n)? Wir kénnten
einfach sagen, dass dass nur [0] und [1] sind, damit fehlt uns allerdings eine sehr
niitzliche Eigenschaft: Vertraglichkeit mit + und -

Also nochmal zum Beispiel = (mod 3)

1+1=2



24+1=3=0

Wenn aber 1 = 2:
0=1=2

Wenn wir Vertréglichkeit mit + und - wollen, dann miissen wir zwischen n
verschiedenen Klassen unterscheiden:

{10L 0], [n=1]} ={[k] | k€ Z} =Z/nZ
mit
k] ={k+in|icZ}
Wir haben aufserdem folgende

Lemma 2.21. Rechenregeln
Fiir alle a,b € Z und n € N (Kommutativitdt):

a+b
a-b

b+a (mod n)
b-a (mod n)

Fiir alle a,b,c € Z und n € N (Assoziativitit und Distributivitdt):

(a+b)+c = a+(b+o) (mod n)
(a-b)-¢c = a-0-c (mod n)
a-(b+c) = ab+ac (mod n)

Wenden wir diesen neuen Stoff auf n? +n + 1 an:
Fall n =0 (mod 2):

n=0]|n

Wir multiplizieren die Gleichung mit n.
n? =

n? ist also gerade.
n?2=0|+n
n+n=n
Dan=0:
n?+n=0

n? 4 n ist gerade.
n2+n=0]+1
n4+n+l1=1

Somit ist n? + n + 1 ungerade, falls n gerade ist.

Falln =1 (mod 2):

n=1]|-n
n=n=1
n?=1|+n

n4+n=14n=141=2=0



n?+n=0]+1
n+n+l1=1
Somit ist n? + n + 1 ungerade, falls n gerade ist.

Somit ist n? + n + 1 immer ungerade!

2.6 Gruppen

Definition 2.22. (M, o) ist eine Gruppe mit M eine Menge undo : MxM — M,
wenn folgendes gilt:

e Die Operation o ist Assoziativ

Va,b,c € M : (aob)oc=ao(boc)

e FEs gibt ein neutrales Element wofir ich oft ep; schreiben werde
deyf € M :Yae M :epypoa=a

o Es gibt inverse Elemente a1

VYVaeM:3a :aoal=ey

Gruppen (M, o) nennt man zusdtzlich noch abelsch, falls o kommutiert, also
aob="boa

Beispiel 2.23.
o (Z,+)
e (R,:) und (Q,-)
o (Z/nZ,+)
Diese Gruppen sind tatsdchlich auch alle abelsch.

(Z/nZ\ [0],-) ist im allgemeinen keine Gruppe, betrachten wir z.B.(Z/47Z\ [0], -):

Hier wire das neutrale Element [1], da z - 1 = z, allerdings gibt es kein 271 mit
2.271 =1.

Beispiel 2.24. Sei (Z/nZ)* = {[k] | k,n coprim}, dann ist (Z/nZ)*,-) eine
Gruppe:

e Die Multiplikation - ist assoziativ
e Das neutrale Element ist 1 und ist immer coprim zu n

e Inverse existieren tatsdchlich auch immer

Ubrigens gilt fiir die Grifie dieser Gruppe |(Z/nZ)*| = ¢(n).



2.7 Ringe

Wieso schreiben wir nun (Z/nZ)*? Der Grund: auf Z/nZ kann man immer eine
Struktur bilden, die sich Ring nennt. Es gibt dann immer zwei Operationen (wie
bei Kérpern), die man oft 4+ und - schreibt.

Ein Ring sieht dann so aus: (Z/nZ,+,-)

Nun ist + das normale +, es ist assoziativ, kommutativ und invertierbar. Anders
ist es mit -, das muss nicht kommutativ und nicht invertierbar sein.

Wenn wir nun (Z/nZ,+, -)* schreiben (oder auch einfach (Z/nZ)*), dann meinen
wir damit die grofitmogliche Teilmenge von Z/nZ, die unter - eine Gruppe bildet,
bzw. meinen wir damit diese Gruppe.

Dass diese immer existiert will ich kurz demonstrieren, nehmen wir R als
beliebigen Ring: Betrachten wir M = {x € R |y € R : 2y = 1x }. 1x ist hier
das neutrale Element von R beziiglich der Multiplikation.

Wir wissen, dass

e Die Multiplikation assoziativ ist
e Es existieren immer inverse (nach Definition)

e Es gibt ein neutrales Element, ndmlich 1z, was natiirlich auch in M
enthalten ist, da 1z immer 1% - 1g = 1 als inverses hat.

Somit ist M eine Gruppe,

2.8 Homomorphismen

Diese sind sehr @hnlich zu linearen Abbildungen auf Vektorrdumen, betrach-
ten beliebige Gruppen (A4, o) und (B,x). Eine Abbildung T : A — B ist ein
Homomorphismus von A auf B, wenn fiir alle x,y € A:

T(xoy) =T(z)xT(y)
Wie bei linearen Abbildungen kann man den Kern ker T definieren:
kerT={a€ A|T(a)=ep}

also alle Elemente, die auf das neutrale Element abgebildet werden.

Tatséchlich, wie bei lin. Abb., gilt T bijektiv <= kerT = {es}. Falls T
bijektiv ist, nennen wir 7" auch einen Isomorphismus und schreiben A = B, da
A und B auf gewisse Art und Weise einfach gleich sind. (z.B.haben sie dann
immer einander entsprechende Elemente)
Betrachten wir eine interessante Eigenschaft von ker T, denn fiir jedes b € B
mit Jda € A: T(a) =b:

IT71(b)| = | ker T|



Kurzer Beweis: Sei k € kerT beliebig, dann T'(a o k) = bx ep. Da jedes a o k
unterschiedlich ist von jedem anderen muss |77 (b)| > |ker T, die Gleichheit
gilt auch, allerdings will ich diese hier nicht beweisen.

2.9 Primitive Elemente

Definition 2.25. Fin primitives Element einer Gruppe (M, o) ist ein g € M,
sodass fiir jedes x € M :
IneN:z=g"

g" ist hier einfach die n-fache Ausfihrung von o. z.B.g> = go g und g* = g.
Man nennt g auch einen Generator von (M, o).

Nicht alle Gruppen haben primitive Elemente, wenn sie eins haben, dann nennt
man diese Gruppen zyklisch.

Satz 2.26. Sei (M, o) eine zyklische Gruppe mit |M|=m < oo

M = 7/mZ
Wenn wir also zyklische Gruppen studieren wollen, kénnen wir genauso gut
Z/mZ studieren.

Beispiel 2.27. Wir wollen wissen, wie viele primitive Elemente eine endliche
zyklische Gruppe (M, o) hat.

Nun haben wir M = Z/mZ, was bedeutet, dass diese Gruppen bis auf eine
Umbenennung der Elemente gleich sind.

Dadurch wissen wir, dass die Anzahl der primitiven Elemente in beiden Gruppen
gleich sein muss. Was sind die primitiven Elemente von Z/mZ?

Die Zahlen, die coprim zu m sind.

Somit ist die Anzahl an primitiven Elementen in Z/mZ und damit auch in M:

¢(m)
Hier wieder die Euler-¢-Funktion.

Notiz 2.28. Da Z/mZ abelsch ist und Z/mZ = M ist auch M abelsch.
Jede zyklische Gruppe ist abelsch.

2.10 Ordnung

Definition 2.29. Sei (M, o) eine Gruppe. Fir x € M nennen wir ord(x) die
Ordnung von x und meinen damit die kleinste Zahln € N mit z" = ey .

z.B.falls M zyklisch ist, gilt fiir primitive Elemente ¢:
ord(g) = [M]|

Es gilt beispielsweise auch immer ord(eps) =1

10



Satz 2.30 (Satz von Lagrange). Fir alle x € M:

ord(z) | |M]
Es gibt auch eine starkere Variante wenn M zyklisch ist, also primitive Elemente
besitzt.

Satz 2.31. Sei g ein primitives Element von M und x € M, dann nennen wir
log, () die kleinste Zahl aus N mit g'°%(®) = 2. Nun gilt

ord(z) - ged(log, (z), [M]) = [M]

2.11 Direkte Summe

Hier wird es so richtig interessant!

Mit dem Isomorphismus zwischen zyklischen Gruppen und Z/mZ lassen sich
viele Fragestellungen auf sehr viel einfachere Strukturen reduzieren. Aber was
ist, wenn wir nur eine abelsche Gruppe (M, o) haben, die nicht zyklische ist?
Hier kommt die direkte Summe & ins Spiel:

Definition 2.32. Seien (A,0) und (B,*) zwei abelsche Gruppen, dann ist
(A,0) ® (B, *) (oder kurz A® B) folgende Gruppe:

e Die Menge ist A X B, das kartesische Produkt beider Mengen, die Menge
aller moglichen Paare

e Die Gruppenoperation Q : A x B — A x B mit
(a1,b1)Q(az,b2) = (a1 0 az, by * bo)

ist einfach nur die komponentenweise Anwendung der einzelnen Gruppen-
operationen

Somit A® B = (A x B,Q). Fir A® A® A schreiben wir A>.

Nun was konnte die viel einfachere Struktur aus der Einleitung sein?

Satz 2.33. Jede abelsche Gruppe (M,o) lasst sich als direkte Summe von
zyklischen Gruppen schreiben:

M =P Pz/przypem

peP neN
Hier ist u(p,mn), wie oft die Gruppe Z/p"Z in der Zerlegung auftaucht.
Die Gruppen Z/p"Z lassen sich iibrigens nicht in weitere Gruppen zerlegen,

somit ist auch die Zerlegung von M eindeutig (bis auf andere Reihenfolge bei
der Summierung)

11



Lemma 2.34. Seien (A,0) und (B, ) zwei abelsche Gruppen und a € A, b € B,
dann

ord(a,b) = lem { ord(a), ord(d) }
Beispiel 2.35. Betrachten wir die abelsche aber nicht zyklische Gruppe (Z/15Z)*.

Hierfiir gilt
(ZJ15Z)" = (Z/3Z)" @ (Z/5Z)"

Was iibrigens aus einem wichtigen Theorem namens Chinesischer Restsatz folgt.
Satz 2.36 (Chinesischer Restsatz). Sei a,b € N mit a und b comprim. Nun ist
v:Z]aZ Db — Z]aZb

mat
(a,b) — ab

ist immer ein Isomorphismus.

Wenn man nun v einschrankt:
B:(Z/aZ)* & (Z/VZ)* — (Z]abZ)*

mit B(x) = y(x) fir alle z € (Z/aZ)* ® (Z/bZ)* dann erhdlt man wiederum
einen Isomorphismus.

Nehmen wir fiir dieses Beispiel nun die Aufgabe, eine Menge M C (Z/15Z)* zu
finden, sodass man jedes x € (Z/15Z)* als Kombination von Elementen aus M
unter Multiplikation (der Gruppenoperation) schreiben kann.

Da (Z/15Z)* nicht zyklisch ist, muss |M| > 1.

Nun sind aber (Z/3Z)* und (Z/17)*5 zyklisch mit jeweils 2 und 3 als generie-
renden Elementen.

Somit muss { (2,1), (1,3) } eine generierende Menge von (Z/3Z)* @& (Z/5Z)* sein,
also dass man jedes Element von der Gruppe als Kombination schreiben kann.
Jetzt haben wir noch den Isomorphismus zu (Z/15Z)*, somit gibt es korrespon-
dierende Elemente fiir (2,1) und (1, 3).

Was sind diese Elemente?

Unter einem Isomorphismus wie § wéren dass 2-1 = 2 und 1 -3 = 3. Somit
M={23}

2.12 Die Direkte Summe und Ringe

In diesem Paper werde ich viel implizit mit der Direkten Summe von Ringen und
dann der Multiplikativen Gruppe davon arbeiten: (A & B)*. Deswegen mochte ich
noch kurz die Vertriglichkeit dieser beiden Operationen @ und (O)* beweisen.

Lemma 2.37. Nehmen wir zwei Ringe A und B.

A"oB* = (AeB)*

12



Beweis.

(A®B)*
~ {(a,b) | a,b e A,B}"
~{(a,b) |a,b € ABA(Ba 07 ia-at =1, A0 07 = 1) }
~{(a b)|aeA*/\beIB%*}
> AY

3 Einleitung

Worum geht es hier iiberhaupt? Gegeben eine beliebige Zahl m € N und die
zugehorige Multiplikationsabbildung M : N — N,z — mx, was ist die Anzahl
an Orbits modulo eine andere Zahl.

Ein Orbit ist die Menge aller Zahlen, die von einer bestimmten Zahl und die
Anwendung von M erreicht werden kénnen. z.B. sei der Zyklus von 1 z1, dann

lexn
Voo € 21 : M(x0) € 21

Nun fehlt noch der modulo Teil, also sei noch gegeben n € N. Dazu modifizieren
wir noch M,, : N — N, 2 — max mod n. Jetzt diirfte auch die Definition von
Orbits mehr Sinn ergeben, da diese jetzt endlich endlich sein miissen und nicht
einfach nur aus Vielfachen von m bestehen.

3.1 Ein paar Beispiele

Wihlen wir m = 3

Fiir n = 1 bekommen wir (mod 1) mit Z/1Z = {[0] } als Menge, die wir uns
anschauen wollen. Dieser Fall ist trivial, da es nur einen moglichen Wert gibt
und somit nur einen Orbit mit nur einem Element.

Fiir n = 2 bekommen wir (mod 2) mit Z/2Z = {0,1}

M(@O0)=0 mod2=0

M(1)=3 mod2=1

Somit 0 +— 0 und 1 +— 1 als die zwei Orbits.

Notiz 3.1. Hier mdchte ich gerne etwas Notation einfihren, um den Orbits
einen sinnvollen Namen zu geben:

Falls x,y € Z/nZ im gleichen Orbit unter M, liegen, dann werde ich in diesem
Paper © =, , y schreiben und x #,, n y, falls nicht.

Sei also [z]=, ~der Orbit von x unter My, also alle Zahlen, die von x aus mit
M,, erreichbar sind (z inklusive).

13



Somit noch die Definition von Orbits

x € [z]=

=m,n

Vg € oz, Ma(ao) € o,
Fiir n = 4 bekommen wir (mod 4) mit Z/4Z = {0,1,2,3}
M@0)=0 mod4=0

M(1)=3 mod4=3

M(2) =6 mod 4 =2

M(3)=9 mod 4 =1

Somit sind die Orbits Q3 4 = {[0]=, ,, [1]=,,,[2]=, , }

Notiz 3.2. Zu Q,, ,: Wenn es eindeutig ist, wird in diesem Artikel auch einfach
Q geschrieben

Fiir n = 8 bekommen wir (mod 8) mit Z/8Z ={0,1,2,3,4,5,6,7}

M(0) =0
M(1) =

M(2)=6
M(3) =1
M(4) =4
M) =17
M(6) =2
M(7)=5

Ok.... so langsam wird es schwierig, hier noch den Uberblick zu behalten, also
mal die Zyklen ausgeschrieben:

0

1—3

26

4

5+ 7 (hier ist auch immer implizit der Pfeil zuriick zum Anfang dabei)

Somit sind die Zyklen Q = {[0]=, ,,[1]=, ,,[2]=, ,,[4]=, ,,[5]=,, } mit [Q] =5

Nun versuchen wir das ganze Mal mit Gruppentheorie auszudriicken. Wahlen wir
n € P, denn dann ist (Z/nZ)* immer zyklisch (Tatsichlich ist auch ((Z/n"Z)*, )
immer zyklisch).

Nun ist
o @2 o) a1
ord(m) ord(m) m
Beweis.
|[m]=,, .| = ord(m)
Fiir jedes x € (Z/nZ)* konnen wir nun [z]=  betrachten.
Entweder gilt = € [m]= ., dann gilt [m]= —=[z]= .

14



Oder [z]=, ~=az[m]e .
Betrachten wir ein Element m’ aus [m]= . mit ¢ e N.
Nun gilt z(mm') = m(zm'), und [z]e = =z[m]e .

O

Wie wir hier sehen konnen héngt || von ord(m) in einer Gruppe ((Z/0Z)*) ab,
diesen Zusammenhang betrachten wir aber besser spéter. Fiirs erste

4 Die Ordnung unter Homomorphismen

Betrachten wir zwei Gruppen Z/pnZ und Z/nZ mit n € N und p € P und dazu
den surjektiven Homomorphismus « : Z/pnZ — Z/nZ mit * — x mod n.

Lemma 4.1. Fir Z/mZ mit m € N gilt:

ord®@) = @ m)

Beweis. Wir suchen ord(x), also das kleinste k € N mit kz =0 (mod m)

kx=0 (mod m) < m|kz < m = ged(m,kx)
m

Bl

= k| edim. )

Da k € [1,m], ist das kleinste k: O

m
ged(w,m)

Betrachten wir alle t € Z/nZ mit 0 <t <nund t+in € Z/pnZ mit 0 < i < p.

Versuchen wir nun ordz,,,z(t+in) in Abhéngigkeit von ordz,z(t) zu bestimmen
(ordz/nz steht hier fiir die Ordnung in ordz,z):

d t - pm
ordz/pnz(t + in) ged(t + in, pn)
ged(t + in, pn) = ged (t + in, pUr (ML vn(n))
p P
pvp(n)+1 ist hier p - die p-Primfaktoren von n und pp% sind alle anderen
Primfaktoren.
ged (¢ 4 in, pr(mHL . 2 = ged (L‘ + in,pvp(n)+1> ~ged [t +in, —0—
[)'MH) pvp(n)

die Faktoren coprim sind, kann man die Terme auseinanderziehen.

ged t—I—imL = ged t,L
p”p(”) pvp(”)

ged(t + in, ptr(MF1) = pmin(ep(t+in),vp(n)+1)
Fiir min(v,(t + in), vy(n) + 1) ergeben sich folgende Fille:
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vp(n) +1 firein ¢

vp(n) sonst

vp(t) = vp(n) vp(t) {

1

Fiir interessierte Lesende ist das autergewohnliche i = —t-n~! (mod p).

Beweis firi=0At=0.

min { v, (t +in),vp(n) +1} = min{ v,(0),v,(n) + 1}
= min { oo, v,(n) + 1}

=up(n)+1
O
Beweis fiiri 0Nt =0.
min { vp(in), vp(n) + 1} = min { v,(n),vp(n) +1}
= vp(n)
davp(i) =0, weil 0 < ¢ < p. O
Beweis firi=0At #0.
min { vy (£), vy () + 1} = 0,(t)
da vp(t) < oo, weil t # 0 und da v,(t) < vp(n) — 1, weil 0 < t < n. O
Beweis fir i # 0 A vp(t) < vp(n).
min { v,(t + _in ),vp(n) + 1} =min{v,(t),vp(n) +1}
vy (in)=vp(n)
= vp(t)
O

Beweis fir i # 0 A vp(t) = vp(n).
min { v, (¢t + in),vp(n) + 1}

ist entweder v,(n) oder v,(n) + 1.
Es ist v,(n)+1 genau dann, wenn p¥»(™M+1 | ¢ 4 in. Da t | n konnen wir schreiben
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ptr MLt (t i -

t=1).

pr(™) | t womit p |t 44 -n -t~ dquivalent ist.
Dann mit Moduloschreibweise: t +i-n -t~ =0 (mod p)
Da t nur ein additives Inverses hat in Z/pZ und n -t~ coprim zu p ist, kann die

Aussage nur fiir ein

Jetzt konnen wir die Ordnung so schreiben:

ordz,/pnz(t +in) =

0 <1 < p gelten.

pn

ged(t, ) - printon(tin)o ()}

O

Dieser Ausdruck ist nicht der praktischste in der Anwendung deswegen mdochte
ich eine Konstante einfiigen:

nun die Werte fir c:

ordz /pnz(t +in) = ¢ - ordz,z(t)

1=0 i1#£0
t=20 1 p
vp(t) < vp(n) p p
1 fiir ein ¢
up(t) = vp(n) || p {
p  sonst

Die Faktoren kénnen Sie gerne selbst nachrechnen, die urspriingliche Tabelle

sollte da eine grofe

Hilfe sein.

Versuchen wir nun dieses Prinzip anzuwenden fiir

5 ord(m) in

(Z/p"Z)*

mit p € P\ {2} und m,k € N mit p{m.

Hierfiir betrachten wir erst mal zwei endliche zyklische Gruppen (J\/J\ ,0), (M, o)

und einen surjektiven Homomorphismus v : M — M.

Sei g ein primitives

Element von M.

Lemma 5.1. vg ist ein primitives Element von M.

Beweis. Wir wissen

M={d"|keNAke[o,| M)}

17



Da ~ surjektiv ist, gilt '71\7 = M und somit

M={(y9)* | keNAke[o,| M)}

Corollary 5.1.1. Somit gilt auch

. M
ker T = {g"| M| |k;eNAke[o,M)}

da ord(yg) = |M| und somit (fyg)k =en

Corollary 5.1.2. e
|M] | [M]

Nun kénnen wir die Gruppen (Z/p*Z)*, (Z/p*Z)*, (Z/p3Z)*, ... und ord(m) fiir
ein beliebiges m € N mit p 1 m betrachten. Es ist hier wichtig, dass p e P\ {2},
da

Satz 5.2.

(Z/nZ)* zyklisch <= n=1Vn=2Vn=4Vn=p"vn=2p" firpeP

Was von Gauss bewiesen wurde.
Betrachten wir nun ord g yx+17)+(x) in Abhdngigkeit von ordz ,rz)s:
Wir wissen, da p # 2, dass (Z/p*Z)* und (Z/p*+1Z)* zyklisch sind und somit.

(Z/p"2)* = 7/ $(p")Z
(Z/p" 2y = Z)p(p* )2

Dieser Isomorphismus ist nicht kanonisch, es gibt also mehr als eine Bijektion
zwischen den Gruppen. Somit legen wir ein beliebiges primitives Element g von
(Z/p*+1Z)* fest und definieren die Bijektionen 7 : Z/¢(p*)Z — (Z/p*Z)* mit
I — ¢'. Nun haben wir ng(m mod p*) € Z/p*Z.

Nun stellt sich die Frage, ob ord(m) fiir bestimmte k irgendwann in einfache
Muster fillt. Betrachten wir hierfiir p?» (7 '(m mod p*)) Der Faktor, um den es
sich verdndert ist:

i=0 i#£0
t=20 p 1
vp(t) < vp(n) 1 1

p fiir ein ¢
1  sonst

vp(t) = vp(n) 1 {

18



also % .

p”P(¢(pk)) verdndert sich auch immer um einen Faktor von p.

Falls also v, (v, ' (m mod p*)) < v,(¢(p*)) bleibt v,(y~!(m mod p*)) immer
gleich, da v,(¢(p*)) streng monoton wichst. Wie die Senke bei DFAs.

Falls m = 1 (mod p), also ; *(m mod p) = 0 gilt fiir jedes k:

p fallsm=1 (modpF1)

-1 By —1 k—1
vp(vg~ (m mod p7)) = vp(ypy (m mod p™~7)) {1 falls m # 1 (mod p*~1)

Ab dem kleinsten k fiir das gilt m # 1 (mod p*) ist die Sequenz in der Senke.

Falls m = —1 (mod p), also v, *(m mod p) = p—;l gilt fiir jedes k:

p fallsm=-1 (mod pF1)

-1 E\y -1 E—1
vp(i " (m mod p7)) = vp(y—y (m mod p ))'{1 falls m # —1  (mod p¥)

Ab dem kleinsten & fiir das gilt m #Z —1 (mod p¥) ist die Sequenz wieder in der
Senke.

Die letzten p — 3 Félle sind etwas komplexer zu beschreiben, statt Gleichheit
mit 1 oder —1 ist fiir - p Gleichheit mit der p-adischen Zahl z notwendig, fiir die
gilt 271 (mmodp) Ty anderen Worten, es gilt fiir jedes k:

p fallsm®=1 (mod p*1)

(07 m mod 1)) = w37 (m modp“”'{l falls m* 1 (mod )

mit e = v, '(m mod p). Ab dem kleinsten k fiir das gilt m® # 1 (mod p*) ist
die Sequenz wieder in der Senke.

Kleiner fun fact: Die vorherigen beiden Falle mit m = 1 und m = —1 kann man
auch auf diese Weise schreiben.

Wie wir hier sehen, gibt es in jedem Fall ein kg, sodass
Vk>ko:m®#1 (mod p¥)

Nun ergibt sich:

max{ 0,k—ko+1}

ord(Z/ka)* (m) = Ord(Z/pZ)* (m) Y

da e = ;' (m mod p) = ord(z,z)- (m)
Was hat das nun mit Orbits zu tun?
6 Die Verbindung zwischen ord und ()|

Betrachten wir erst einmal fiir m € N, p € Pund k € N* mit p { m die Abbildung
M, : Z/p*Z — Z/p*Z mit x — ma. Stellen wir folgendes fest:

vp() = vy (My ()
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da p { m. Somit ldsst sich die Wertemenge von M, also Z/ pFZ, in k-Submengen
aufteilen, die geschlossen unter der Anwendung von M, sind.

Notiz 6.1. Fir eine Funktion f: A — B und X C A ist flx : X — B die
Einschrinkung von f auf die Definitionsmenge X .

Die Orbits von M, sind also genau die Orbits von

My g npolinez yr Myt [ neptlinez y, Mps [ np?linezy - - -

coos Mkl pr=1nez s Mpr|{ (nptinezy
zusammengenommen, also die Orbits von den Zahlen fiir die v,(0) = 1, fiir die
vp(0) =2, ..., fiir die v,(0) = k — 1 und fiir die v,(0) = k.
Nun ist fiir jedes 0 < ko < k die Linge des Orbits von mpk®

|[mpk¢7]£| = OI‘d(Z/pk—k@Z)* (m)

Was steht hier also? Die Linge des Orbits von mpF® ist, wie oft man M,k
anwenden muss, bis man wieder mp*® erhilt. ord ist, wenn man bei 1 anfingt,
wie oft man mit m multiplizieren muss, bis man wieder 1 erhalt.

Warum kann man hier das eine durch das andere ersetzen? Ein anschauliches
Beispiel:

Sei p = 10 eine Primzahl und sei m = 3. Betrachten wir die Orbits €3 ;2.
Betrachten wir vor allem einen, den von 10:

10 — 30 — 90 — 70

Dies ist genau der von 1 (mod 10):
1=3=9=7

nur multipliziert mit 10.

Der Grund hierfiir ist ziemlich offensichtlich. Es ist egal, wenn wir mit 3 multipli-
zieren, ob noch Nullen an der Zahl hdngen oder nicht. 10 ist nun keine Primzahl,
aber das gleiche Prinzip lésst sich auch auf andere Basen anwenden.

Nun wissen wir fiir alle p*® die Linge des Orbits. Dies sagt uns auch die
Lénge aller anderen Orbits von [J - p*°. Nehmen wir ein 0 < ko < k und ein
z & [kole = [mkole mit vy(z) = ko:

[7]e = {ox| o€ [ko]= }

D.h. die Lénge aller Orbits mit gleicher Wertigkeit ist gleich, ndmlich ord(Z Iph ko) (m).
Was ist dann die Anzahl der Orbits mit Wertigkeit ko? Die Anzahl an moglichen
Werten durch die Linge eines Orbits: ¢(p*=*)/ ord y  k—ko 7y ().



Somit
|Qm,p’“ |

k
- Z ¢(pkik©)/0rd(z/p’“—koz)*(m) +1

ko=1

k-1
- Z ‘b(pk@)/ord(z/pkvz)*(m) +1

ko=0
k—1
— 1)pko—1
= Z (p >2Zna_x(ok —k +1) +1
ko=0 Ord(Z/pZ)*(m) P RO =Ko
k—1 _
= Y e
ord z/pz)- (m) S pmaxOho kot )
k—1

__p=1 I pro-i-max(Okokot1) 4 g

ord(z/pzy-(m) L=,

IR TE
ordzpz)-(m) L= p
VA S o b b S .
ordzpzy-(m) L= p
1 k—1
= pi pmm(kg%kofg) +1
ord(z/pz)- (M) =
» 1 min(k—1,ko—2) k1
= — ko ko—2
= ordz/pz)- (M) P E ) D +1

V]
min(k—1,ko—2)+1
min(k—1,ko—2)
= ordig m- (M) Z P + (k—1— min(k — 1’k0_2))pkof2 i1
ko=0
min(k—1,ko—2)
= ordig e (m) Z P’ — (=k+14min(k — 1,ky — 2))p™ 2 | +1
ko=0
p 1 min(k—1,ko—2)
- _ qu . k072
oz (m) p*® — (min(0, ko — k = 1))p +1
ordz/pz)- (m) g::o
p 1 min(k—1,ko—2)
- — ko ko—2
= ord(zm-(m) " + max(0,k — ko + 1)p 11
ord(z/pz)+ (M) k@z::()
_ p— 1 <pmin(k:,k01) 1
ord(z/pz)- (M) p—1

+max(0,k — ko + 1)pk02> +1

1 ( in(k,ko—1) .
0 (printks —1+(p—1)max(0,k — kg + 1)p™ )-%1
ord(z/pz)- (M) : : ( i )



7 ord(m) in (Z/2"Z)*

Nun zu einer interessanten Frage, warum haben wir im letzten Abschnitt nicht
gleich die Formel auch fiir 2" gezeigt? Die einfache Antwort ist, dass (Z/2"Z)*
nicht zyklisch ist, allerdings ldsst sich ein fast gleicher Beweis auch hier durch-
fiihren, was ich in dem folgenden Abschnitt machen werde.

Zuallererst benotigen wir hierfiir die Struktur von (Z/2"Z)*:
{3, -1} ist ein generierendes System fiir (Z/2"Z)*, also fiir jedes © € (Z/2"Z)*:

Ju,be NU{0}a<2"b<2:2=3%(=1)® (mod2")
Schritt 1; 3 ist ein primitives Element von (Z/2Z)*, (Z/AZ)*:
z)2z)" ={[1]}:1=1
(z/AzZ)" ={[1],[3]}: 1= 3—1
Nun betrachten wir induktiv ord(3) und versuchen zu zeigen, dass
ord(z/onz)- = on—2

Nehmen wir an fiir ord(z/onz)+(3) = n—2:
Es gibt zwei Félle.

° Ord(Z/2n+1Z)* =on—2

. Ord(Z/QnJrlz)* =on-1
Betrachten wir nun vp(32n72 —1) und vp(32n72
vp(3Y) +1=2und v,(3*") + 1 =1 fiir n € N.
Fiir n = 2 gilt 1,(32° —1) = 0,(3' —=1) = v,(2) = 1

+1).

Nehmen wir an, dass v,(3>" —1) =n — 1 mit n > 2:
n—1 n—2
vp(3% — 1) =0, (3% )2 - 1)
=0 (3 - EY 1)
=0,((3%"7 — 1) +0,((3%" " +1))

=n—-1+1=n

Somit muss v, (32" ) =n — 1.

Damit muss 32"~ = 3°"d@/22-19 = 9n—1 ypd ord(z anzy« > ord(z/an-17)«. Also
ord(z/onz)x = 271 da ord(z/gn-1z)- | ord(z/onz)~-

Schritt 2; #z € N : 3 = —1 (mod 2"):
Fiir (Z/8Z)*: 1— 3 — 1.
Allerdings 2" — 1 = —1 (mod 8) O
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Man kann ord /Qn_zz)*(3) Werte als 3-er Potenz darstellen, wenn man dann
noch mit —1 multipliziert, kann man

2- Ord(Z/an)*(g) =2- Ord(Z/g.Qn—2Z)* = 2n—1 = |(Z/2"‘1Z)*|

verschiedene Werte darstellen.
Somit ist {3, —1} ein generierendes System von (Z/2"7Z)*. O

Nun muss
(Z)2"Z)* 2 7.)2" %7 & 7./27

Wihlen wir folgenden Isomorphismus:
v: 2" 2@ Z/27 — (Z/2"7)*

(a,b) = 3% (—1)"

oder dquivalent:
ts 30 (=)

mit ¢ € N? und fiir t = (a,b), t; = a und t5 = b.
Wir wissen, dass G = ({ [3!]= (mod 27y | L €N}, ) = (Z/2"=2Z,+) und somit

ord(zanzy- (m) = lem(ordz jgn-27(y ™" (m)), ordz oz (v~ "5 (m)))

= lem(ordg(m), ordz oz (v o(m)))

in der letzten Zeilen miisste man eigentlich ordZ/QZ(’y\,Y(Gle(m)) schreiben,
was allerdings etwas uniibersichtlich ist.

_ 1 “,(m)=0
ordz oz (v~ 5 (m)) = {2 falls zngm; -

G allerdings, ist zyklisch, das heifst wir konnen die Tabelle fiir vy anwenden.

i=0 i 40
t=0 va(n) +1 va(n)
va(t) < va(n) va(t) va(t)

va(n) +1 fir ein i

v2(t) = va(n) va(t) {

va(n) sonst

Allerdings ist v2(t) = ve(n) nur moglich, wenn ¢ = 0, somit kann man die letzte
Zeile weglassen:
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i=0 | i#0

t=0 va(n) +1 | va(n)

va(t) < va(n) va(t) va(t)

Wir haben, wie in dem letzten Abschnitt, also wieder ein kg ab dem fiir alle
n > ko gilt: v~ (m) # 0 oder auch m # 1 (mod 2").
Wenn m = 39 - (=1)°, dann ist

ord(z/nzy- (m) = 2mx(On=hot1)

Wenn m = 39 - (—1)!, dann ist

OI“d(Z/QnZ)* (m) = lcm(ord(Z/gnZ)* (—1), Ord(Z/QnZ)* (—m))

Fiir n <1 gilt ord(z/onz)«(—1) = 1.
Fiir n > 2 gilt ord(z/onz)-(—1) = 2.
Somit wenn m = 3" - (—1)* und n > 2, dann ist

ord(z/anz)- (m) = lem(2, ord(z onz)~ (—m))

Das kg zu —m ist einfach die kleinste natiirliche Zahl kg, ab die fiir alle n > kg
gilt:

m # —1 (mod 2™).

Somit kénnen wir unsere Definition von ko umschreiben zu m # £1 (mod 27).

Hiermit ergibt sich dann die Formel:

1 n=1
ord(z/anz)+ (m) =  2max(On—ko+1) falls m=1 (mod 4)
lem (2, 2max(0:n—ko+1)) m=-1 (mod 4)
oder auch
1 falls n <1
ord(z/2nzy+ (M) = 2 falls m = —1 (mod 2")

Qmax(O,n—kg—H) sonst

Nun alles zusammenfiihren in
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8 ord(z/nz)-(m)

Sei n = p®-x mit p € P, e = vp(n) und # = & Betrachten wir nun den
Isomorphismus v : (Z/p°Z)* x (Z/xZ)* — (Z/p°xZ)* mit (a,b) — ab. Dies ist
ein Isomorphismus nach dem Chinesischen Restsatz, da p® und x coprim.

In anderen Worten
(Z/p°Z)" & (Z/2Z)" = (Z[p°xZ)"

Wir wissen somit auch, dass fiir alle m € (Z/p°xZ)*:
ord(z/pezz)+ (M) = lem <ord(Z/ch)* (m),ord(z/ 27, (m))

Wenn wir nun die Primfaktorzerlegung n = HpeJP’ pU»(") betrachten, dann gilt:
ord(z/nz)+(m) = lem {ordz v,z (M) | p € P}

Das gilt, da (Z/17Z)* = { [0] } und somit ord(z/1z)-(m) = 1.
Warum lem iiber alle Primzahlen? Wir wenden praktisch -y fiir jedes der einzelnen
p|n an.

Versuchen wir uns nun am Hauptthema-

9 19

Wir haben also m € N und n € N mit m und n coprim. Nun gilt:

o(%)

‘ Qm’n| — . TNts
ﬂZn OI‘d(Z/%Z)x (m)

Dies ist die gleiche Formel wie fiir [€2,,, ,»| nur fiir allgemeine Zahlen. Der Beweis

funktioniert auch hier &hnlich, da m und n coprim sind und somit jeder Orbit

eine feste v, Wertigkeit hat. Hier ist nun die Wertigkeit fiir alle p | n gleich. O
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Versuchen wir die Formel etwas zu vereinfachen:

o(%)
Z ord(z/nz)-(m)

tin

¥ ¢(%)
. lem {ord z,upm/oz)-(m) | p €P}

_ o(t)
Z lcm{ord(Z/pvp(t)Z (m)|peP}

Trennen wir nun die Summe nach Primfaktoren auf

v2(n) vpy (N) vpy (N) vpg (1)

o(1)
Z Z Z Z lcm{ord(z/pjiz)* (m)|ieNo}

ep=— 0 61_0 €= =0
mit ¢t = Hpi"
ieN
v2(n) vpy (1) vpy () Vpgy (7) o(I1 pi?)

ieN
Z Z Z Z lcm{ord(Z/pelz)*( m) |i€ Ny}

ep=0 e1=0 e2=0

alle p; sind coprim

va(n) Vpy (1) Vpy (n) Urg (n) H (b(pzel)

ieN
Z Z Z Z lcm{ord(Z/p?iZ)*(m) |ieNg}

600610620

Weiter zu vereinfachen wird sehr schnell sehr kompliziert, weswegen ich es in
diesem Paper nicht versuchen werde.

Da nun das Thema dieses Papers geklért ist, mochte ich noch eine Anwendung
der Ergebnisse die Gruppenstruktur von (Z/nZ)* und ein ungenutztes Lemma
présentieren.

10 Anwendungen

Die Formel fiir die Anzahl an Orbits bringt mich nicht auf irgendwelche Anwen-
dungsméglichkeiten, anders ist es allerdings mit der allgemeinen Formel fiir die
Ordnung eines Elements. Es ldsst sich daraus ein Algorithmus extrahieren, der
fiir bestimmte Zahlen sehr viel schneller ist als bisherige. Der Vorteil der Methode
dieses Papers ist, gegeben eine Zahl n = Hpe]P p?»(™  dass der Algorithmus auch
sehr schnell ist fiir grofere v,, anders als z.B. die Implementation von sympy
also Python.

Auf den folgenden Seiten ist meine Implementation der Methode dieses Papers
in Python:
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1 from math import ged, lem

2

3

4 def calculate kO (integer , prime):

5 """ Compute the kO value for the

6 calculation of the multiplicative order.

7

8 :param integer: The number of which we are
9 trying to find the order

10 :param prime: The prime

11 :returns: The value for kO, the smallest exponent
12 such that integerxxk0 is

13 no longer of a specific form

14 mmnn

15

16 if ged(integer , prime) != 1:

17 raise ValueError("integer and prime"
18 + " should be coprime")
19

20 if prime — 2:

21 # The normal procedure won’t work here,
22 # because n_order(integer , 2)==1

23 # for every integer

24 ko = 2

25

26 while True:

27 mask = (1 << k0) — 1 # 2xxk0 — 1
28 # Bit operations used here,

29 # could also beimplemented using %
30 if (integer & mask != 1

31 and —integer & mask != 1):
32 break

33 kO +=1

34 return kO

35

36 base order = n_order(integer , prime)

37

38 kO = 2

39 # We are trying to find the smallest exponent,
40 # so we are doing a simple linear scan

41 while pow(integer , base order, prime xx k0) =— 1:
42 kO +=1

43

44 return kO

45

46
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47 def fast order prime power(integer , prime, exponent):
48 nmnn

49 Calculate the order of integer modulo primesxxexponent
50 :param integer: The element

51 of the multiplicative group

52 :param prime: The base

53 :param exponent: The exponent

54 :returns: The multiplicative order

55 mmn

56

57 if ged(integer , prime) != 1:

58 raise ValueError("integer and "

59 + "prime should be coprime")
60 if exponent < 1:

61 raise ValueError("exponent should"

62 + " be larger than 0")
63

64 k0 = calculate kO (integer , prime)

65

66 if prime — 2:

67 # powers of two have a couple of specialties
68 if exponent =— 1: return 1

69 if (integer + 1) & ((1 << exponent) — 1) = O0:
70 return 2

71

72 base order =1

73 else:

74 base order = n_order(integer , prime)
75

76 return base order

7 x prime xx (max(0, exponent — kO + 1))
78

79

80 def fast order(integer , modulo):

81 """Calculate the multiplicative

82 order of integer mod modulo.

83

84 :param integer: The element of the

85 multiplicative group
86 :param modulo: The mod of the group

87 :returns: The order of integer

88 nmnn

89

90 if ged(integer , modulo) != 1:

91 raise ValueError("integer and"

92 + "modulo should be coprime")
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order = 1
prime, exponent
order = lem (
order ,

factorint (modulo).items ():

fast _order prime_power (
integer , prime, exponent)

order

Die fast_order Methode ist, bis auf den dahinterliegenden Algorithmus, aqui-
valent zu n_order von sympy.

Vergleichen wir nun die Laufzeit:

Element Primzahl Exponent ch)friﬁal StheIilill Zeit lljg(;rmal Zeit lfgimen
3 2 1 0.00 0.00 -17.3 -15.4
3 2 10 0.00 0.00 -14.8 -15.6
3 2 100 0.00 0.00 -13.7 -15.7
3 2 1000 0.00 0.00 -7.9 -15.3
3 2 10000 2.21 0.00 1.1 -13.5
2 3 1 0.00 0.00 -15.9 -15.2
2 3 10 0.00 0.00 -15.1 -15.0
2 3 100 0.00 0.00 -12.2 -14.1
2 3 1000 0.03 0.00 -5.0 -13.3
2 3 10000 19.82 0.00 4.3 -10.3

Element ist m, die Zahl mit der wir multiplizieren. Primzahl p und Exponent
e sind p® = m, das die Gruppe angibt (Z/p°Z)*. Zeit Normal ist die Zeit (in
Sekunden), die n_order fiir den Aufruf benétigt. Zeit Schnell ist die Zeit, die
meine Implementation braucht. Die log Zeiten sind log,(t), also der zweite
Logarithmus von der Zeit t.

Folgender Code wurde verwendet, um die Tabelle zu erstellen:

math
timeit

Sympy

("| Element

ged

log2

timeit

n_ order

Primzahl | Exponent

+ "Zeit Schnell |
A" ok 7)

(H|H+H

PRIME

(2,

3]:

Zeit Normal | "

log Zeit Normal | log Zeit Schnell
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11 for EXPONENT in [10 #%x n for n in range (5)]:

12 for MULT in [2, 3]:

13 if ged MULT, PRIME) != 1:

14 continue

15

16 t_a = timeit (

17 lambda: n_order (MULT, PRIME x% EXPONENT) ,
18 number=1

19 )

20 t_b = timeit (

21 lambda: fast order (MULT, PRIME %x EXPONENT),
22 number=1

23 )

24

25 print (

26 f"] {MULT} | {PRIME} | {EXPONENT} | "

27 + f"{t_a:0.2f} | {t b:0.2°f} | "

28 + "{log2(t_a):0.1f} | {log2(t b):0.1f} |")

11  Struktur von (Z/nZ)*

Ganz am Anfang dieses Papers habe ich die Direkte Summe eingefithrt und
dabei ein wichtiges Theorem vorgestellt:

M = DD/

p€EP keN

Versuchen wir nun die Werte von p(p, k) in Abhéngigkeit von n zu bestimmen.

Durch den Chinesischen Restsatz wissen wir, dass

(Z/n2)" = Pz /p ML)

peP

Nun ist alles, was noch iibrig ist, die Gruppen (Z/p*»("™)Z)* maximal zu zerlegen.
Fiir p € Primes\ {2}

Z/12 fans Ur()

vp () 7)* o
(Z/p™™D) {(Z/(p ~1)Z) & (Z/(vy(n) — 1)Z) orl)

Nun noch zu p = 2. Wir wissen ja bereits aus jord(m) in (Z/2"7Z)%|

Vol
oo

va(n * Ay Z/lZ A UQ(n)
(227" 7" = {(2/22)@ s -1z o)
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Nun ist Z/p™Z nicht mehr zerlegbar, Z/(p — 1)Z aber moglicherweise schon.
Versuchen wir nun eine Formel aufzustellen:
oK) = it oy (n) = e+ 1) + 3 ity (a — 1) = &)

q€eP
qln

if (OJ) ist hier eine Funktion, die einen Wahrheitswert zu 1 oder 0 umwandelt:

if(A) =1 < A

12 Appendix

Das folgende Lemma habe ich im Zuge des Beweises erstellt, habe es dann
schlussendlich nicht gebraucht. Nun habe ich es trotzdem dem Paper angehangen,
da ich es interessant finde.

12.1 Qin Ax B

Wir haben zwei endliche Mengen A und B und zwei bijektive Abbildungen
a:A— Aund §: B— B. Da a und $ bijektiv sind, miissen sich Orbits unter
ihnen ergeben, schreiben wir diese als {2, und respektive €25. Betrachten wir
My ¢ nopiinezyA X B = A x B mit (a,b) — (a(a), (b)) und dessen Orbits

axf3-

Lemma 12.1.

‘anﬁ| = Z ng(|N|7 |3|)
NeQ,
JeQp

Beweis. Seien R € Q, und 3 € Qpg:
Versuchen wir zu verstehen, wie viele Orbits es unter o x B|nwx3 gibt. Tatséichlich
konnen wir (X X 3, X B|xxa) als Gruppe sehen und somit

(R x 3,0 x Blaxa) = (R,a) & (3,8)
Sei fiir © € M: [x], der Orbit von z unter a.

z.B. fir a € X gilt [a], =N
Betrachten wir nun ¢ € X und b € 3:

[[(@; D)laxglual = lem([[alal, [[b]5)]

was aus der Direkten Summe folgt. Somit wissen wir aber auch, dass

[[(@, 0)]axglnsa| = lem([R], [3)
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und alle Zyklen unter o x Bluxa die gleiche Lange haben, womit die Anzahl
genau
RI13
|Qaxpluxal = Tem (N, [3) ged(IN[, [3])

sein muss.

Wenn wir nun die Summe iiber alle X € Q, und 3 € Q3 nechmen, dann erhalten
wir die Formel aus dem Lemma.
O
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