
Die Anzahl an Orbits unter Multiplikation
modulo eine Zahl

Jonathan Günthner

Sommer 2024

1 Abstract

Worum geht es hier kurz und knapp? Wie viele Zyklen gibt es, wenn man immer
wieder mit einer Zahl multipliziert und das Ergebnis dann modulo eine andere
Zahl nimmt.
Das Ergebnis dieses Papers ist, dass für m,n ∈ P mit gcd(m,n) die Anzahl an
Zyklen/Orbits modulo n

v2(n)∑
e0=0

vp1 (n)∑
e1=0

vp2 (n)∑
e2=0

· · ·
vp□ (n)∑
e□=0

∏
i∈N

ϕ(peii)

lcm { ord(Z/pei
i Z)∗(m) | i ∈ N0 }

ist.
Weiterhin werde ich zeigen, dass für p ∈ P \ { 2 } und m ∈ N \ pN und k ∈ N

ord(Z/pkZ)∗(m) = ord(Z/pZ)∗(m) · pmax{ 0,k−k0+1 }

Letztlich möchte ich noch eine algorithmische Implementierung der letzten
Gleichung präsentieren, die die Ordnung für bestimmte Zahlen sehr schnell
berechnen kann.

1

2 Grundlagen

Diesen Teil kann man getrost überspringen, wenn man die Euler-ϕ-Funktion, die
Primfaktorzerlegung, die p-adische Werigkeit, Modulorechnen, Äquivalenzklassen,
abelsche Gruppen, Lagranges Satz, Homo- und Isomorphismen, die Direkte
Summe und den Fundamentalsatz der abelschen Gruppen gut verstranden hat.
Hier eine Übersicht zu der Einführung:

• Die Primfaktorzerlegung

• Die p-adische Wertigkeit

• Die Funktionen gcd und lcm

• Die Euler-ϕ-Funktion

• Restklassen

• (abelsche) Gruppen

• Ein kurzer Abstecher zu Ringen

• Homomorphismen auf Gruppen

• Primitive Elemente auf Gruppen

• Die Ordnung und der Satz von Lagrange

• Die Direkte Summe und der Fundamentalsatz der abelschen Gruppen

2.1 Primfaktorzerlegung

Jede natürliche Zahl n kann man auf eine und nur eine Art und Weise als Produkt
von Primpotenzen schreiben. Zum Beispiel

12 = 22 · 3

Hier beachten wir also nicht die Reihenfolge.
Das sieht dann ganz allgemein dann so aus:

n = pv1
1 · pv22 · . . .

Eine Primzahl p ∈ P hat immer den Exponenten v ∈ N in der Primfaktorzerle-
gung, wie oft man n durch p teilen kann.

2

2.2 p-adische Wertigkeit

Die p-adische Wertigkeit vp einer Zahl n ist, wie oft man z durch p teilen kann.
Das ist ist das gleiche, wie der Exponent in dem vorherigen Abschnitt. Somit
gilt für n ∈ N:

n =
∏
p∈P

pvp(x)

Also jede Primzahl taucht genauso oft in der Zerlegung auf, wie die Zahl durch
die Primzahl teilbar ist.
Für vp gelten ein paar Rechenregeln:

Lemma 2.1. Für alle a, b ∈ Z und p ∈ P

vp(a · b) = vp(a) + vp(b)

Wenn man a vp(a)-Mal durch p teilen kann und b vp(b)-Mal durch p teilen kann,
dann kann man a · b vp(a)-Mal und dann noch mal vp(b)-Mal durch p teilen.

Lemma 2.2. Für alle a, b ∈ Z und p ∈ P

vp(a+ b) =


vp(a)

vp(b)

vp(a)

> vp(a)

falls

vp(a) < vp(b)

vp(a) > vp(b)

vp(a) = vp(b) ∧ pvp(a)+1 ∤ a+ b

vp(a) = vp(b) ∧ pvp(a)+1 | a+ b

Die Hauptaussage hier ist praktisch, dass, wenn in einer Summe die Wertigkeiten
der einzelnen Zahlen unterschiedlich sind, dann die Wertigkeit der Summe das
Minimum beider Wertigkeiten ist.

Beweis. Nehmen wir n, t ∈ N und p ∈ P mit vp(t) > 0

Nun gilt
vp(n) < vp(tn) = vp(n) + vp(t)

Wenn wir nun tn+ n betrachten, dann

tn+ n = n(t+ 1)

aber entweder p | t oder p | t+ 1 und da p | t

vp(t+ 1) = 0

und
vp(n(t+ 1)) = vp(n) + vp(t+ 1) = vp(n)

Die unteren beiden Fälle- möchte ich hier nicht erörtern, aber man versteht sie
am besten, in dem man sich die Addition zweier Zahl in der Basis p anschaut.

3

2.3 gcd und lcm

Definition 2.3. Für a, b ∈ N ist gcd(a, b) die größte natürliche Zahl, die a und
b teilt. (Greatest Common Divisor)

Definition 2.4. lcm(a, b) ist die kleinste natürliche Zahl, die sowohl ein Vielfa-
ches von a und auch von b ist. (Least Common Multiple)

Definition 2.5. Coprim
Zwei Zahlen a, b ∈ N sind coprim, wenn es keine natürliche Zahl n ̸= 1 gibt mit
n | a und n | b.
Wenn zwei Zahlen a, b ∈ N coprim sind, genau dann gilt gcd(a, b) = 1.

Lemma 2.6. Seien a, b, c ∈ N mit a und b coprim, also gcd(a, b) = 1

gcd(ab, c) = gcd(a, c) · gcd(b, c)

Lemma 2.7. Seien a, b, c ∈ N mit a und b coprim

lcm(ab, c) = lcm(a, b, c)

2.4 Euler-ϕ-Funktion

Definition 2.8. Für n ∈ N ist ϕ(n) die Anzahl an natürlichen Zahlen k mit
k < n und k und n coprim.

Lemma 2.9. Für alle p ∈ P

ϕ(p) = p− 1

Also alle natürlichen Zahlen, die kleiner als p sind, haben keine gemeinsamen
Faktoren mit p, was auch Sinn ergibt, da p ansonsten nicht prim wäre.

Lemma 2.10. Für alle a, b ∈ N mit a und b coprim

ϕ(a · b) = ϕ(a) · ϕ(b)

Beispiel 2.11. a = 2 und b = 3

Nur 1 ist coprim zu 2 somit ϕ(2) = 1

Nur 1 und 2 sind coprim zu 3 somit ϕ(3) = 2

Nun erwarten wir ϕ(6) = ϕ(2) · ϕ(3) = 1 · 2 = 2.
Es sind nur 1 und 5 coprim zu 6, somit ist tatsächlich ϕ(6) = 2

Lemma 2.12. Für alle n ∈ N und p ∈ P

ϕ(pn) = ϕ(p) · pn−1 = (p− 1) · pn−1

Beispiel 2.13. p = 3 und n = 2

ϕ(3) = 2 und wir erwarten nun, dass ϕ(9) = ϕ(3) · 31 = 6.
Nur 1, 2, 4, 5, 7, 8 sind coprim zu 6 womit die Aussage hier stimmt.

4

2.5 Restklassen

Was ist das also? Betrachten wir ein Beispiel.

Beispiel 2.14. Wir wollen wissen, ob

∀n ∈ N : n2 + n+ 1 gerade

Dafür, würde ich behaupten, müssen wir wissen, ob n2 gerade ist.

Lemma 2.15.
n gerade ⇐⇒ n2 gerade

Beweis.
Falls n gerade, also n = 2k für ein k ∈ N, dann

n2 = (2k)2 = 2 · (2 · k2)

somit n2 gerade
Falls ¬(n gerade), also n = 2k − 1 für ein k ∈ N, dann

n2 = (2k − 1)2

= (2k)2 − 2(2k · 1) + 1

= 2(2k2)− 2(2k · 1) + 1

= 2(2k2 − k · 1) + 1

Also ist n2 eine gerade Zahl plus 1 und somit ungerade.

Lemma 2.16. Das geht auch viel einfacher

Ich würde postulieren, dass alles, was entscheidet, ob ein Ausdruck wie n2 + n+ 1
gerade ist, folgendes ist: ob die Bestandteile gerade sind.
Schreiben wir nun also n ≡ 2 (mod 2), wenn die Zahl n gerade ist, um aus-
zudrücken, dass es keinen Unterschied zwischen 2 und n gibt, wenn wir uns
nur anschauen, ob die Zahl gerade ist, also ob die Zahl ein Vielfaches von 2 ist.
Deswegen auch (mod 2) für Vielfache von 2, bei Vielfachen von 3 würde man
(mod 3) schreiben.
Jetzt ist die Menge aller Zahlen für die gilt k ≡ 2 (mod 2), die Menge aller
geraden Zahlen

{ 2i | i ∈ Z } = 2Z

(Es sind auch negative Zahlen enthalten)

Die Menge aller Zahlen für die gilt k ≡ 1 (mod 2) ist die Menge aller ungeraden
Zahlen

{ 2i+ 1 | i ∈ Z } = 2Z+ { 1 }

5

Diese beiden Mengen sind die Restklassen, bzw. auch die Äquivalenzklassen
unter ≡ (mod 2).

Notiz 2.17. Für (mod 3) gilt übrigens, dass 1 ̸≡ 2 (mod 3). Das liegt daran,
das 2 + 1 ≡ 0 (mod 3), aber 1 + 1 ≡ 2 ̸≡ 0 (mod 3); 1 und 2 sind also nicht
gleich, wenn man sich nur Vielfachheit von 3 anschaut.

Nun die formale Definition:

Definition 2.18. Betrachten wir irgendeine Äquivalenzrelation =R , also eine Re-
lation, die irgendeine Gleichheit angibt. Eine Äquivalenzrelation ist eine Relation,
die

• transitiv ist
∀a, b, c : a=R b ∧ b=R c =⇒ a=R c

• reflexiv ist
∀a : a=R a

• symmetrisch ist
∀a, b : a=R b ⇐⇒ b=R a

Definition 2.19. Die Äquivalenzklasse von einem Element a bezüglich =R ist

[a]=R = {x | a=R x }

also die Menge aller Elemente, die wir gegeneinander vertauschen können, wenn
wir uns nur Gleichheit bezüglich =R betrachten.

Beispiel 2.20.

• C mit = für =R
[x]= = {x }

es ist nur ein Element gleich zu sich selbst

• N mit ≡ (mod n)

[0]≡ (mod n) = nZ

Wenn wir Vielfachheit von n betrachten, dann sind alle Vielfachen von n
gleich.

Was sind nun genau die Äquivalenzklassen unter ≡ (mod n)? Wir könnten
einfach sagen, dass dass nur [0] und [1] sind, damit fehlt uns allerdings eine sehr
nützliche Eigenschaft: Verträglichkeit mit + und ·
Also nochmal zum Beispiel ≡ (mod 3)

1 + 1 ≡ 2

6

2 + 1 ≡ 3 ≡ 0

Wenn aber 1 ≡ 2:
0 ≡ 1 ≡ 2

Wenn wir Verträglichkeit mit + und · wollen, dann müssen wir zwischen n
verschiedenen Klassen unterscheiden:

{ [0], [1], ·, [n− 1] } = { [k] | k ∈ Z } = Z/nZ

mit
[k] = { k + in | i ∈ Z }

Wir haben außerdem folgende

Lemma 2.21. Rechenregeln
Für alle a, b ∈ Z und n ∈ N (Kommutativität):

a+ b ≡ b+ a (mod n)
a · b ≡ b · a (mod n)

Für alle a, b, c ∈ Z und n ∈ N (Assoziativität und Distributivität):

(a+ b) + c ≡ a+ (b+ c) (mod n)
(a · b) · c ≡ a · (b · c) (mod n)
a · (b+ c) ≡ ab+ ac (mod n)

Wenden wir diesen neuen Stoff auf n2 + n+ 1 an:
Fall n ≡ 0 (mod 2):
n ≡ 0 | ·n
Wir multiplizieren die Gleichung mit n.
n2 ≡ 0
n2 ist also gerade.
n2 ≡ 0 | +n
n2 + n ≡ n
Da n ≡ 0:
n2 + n ≡ 0
n2 + n ist gerade.
n2 + n ≡ 0 | +1
n2 + n+ 1 ≡ 1
Somit ist n2 + n+ 1 ungerade, falls n gerade ist.

Fall n ≡ 1 (mod 2):
n ≡ 1 | ·n
n2 ≡ n ≡ 1
n2 ≡ 1 | +n
n2 + n ≡ 1 + n ≡ 1 + 1 ≡ 2 ≡ 0

7

n2 + n ≡ 0 | +1
n2 + n+ 1 ≡ 1
Somit ist n2 + n+ 1 ungerade, falls n gerade ist.

Somit ist n2 + n+ 1 immer ungerade!

2.6 Gruppen

Definition 2.22. (M, ◦) ist eine Gruppe mit M eine Menge und ◦ : M×M → M ,
wenn folgendes gilt:

• Die Operation ◦ ist Assoziativ

∀a, b, c ∈ M : (a ◦ b) ◦ c = a ◦ (b ◦ c)

• Es gibt ein neutrales Element wofür ich oft eM schreiben werde

∃eM ∈ M : ∀a ∈ M : eM ◦ a = a

• Es gibt inverse Elemente a−1

∀a ∈ M : ∃a−1 : a ◦ a−1 = eM

Gruppen (M, ◦) nennt man zusätzlich noch abelsch, falls ◦ kommutiert, also
a ◦ b = b ◦ a

Beispiel 2.23.

• (Z,+)

• (R, ·) und (Q, ·)

• (Z/nZ,+)

Diese Gruppen sind tatsächlich auch alle abelsch.

(Z/nZ\ [0], ·) ist im allgemeinen keine Gruppe, betrachten wir z.B.(Z/4Z\ [0], ·):
Hier wäre das neutrale Element [1], da x · 1 = x, allerdings gibt es kein 2−1 mit
2 · 2−1 = 1.

Beispiel 2.24. Sei (Z/nZ)∗ = { [k] | k, n coprim }, dann ist ((Z/nZ)∗, ·) eine
Gruppe:

• Die Multiplikation · ist assoziativ

• Das neutrale Element ist 1 und ist immer coprim zu n

• Inverse existieren tatsächlich auch immer

Übrigens gilt für die Größe dieser Gruppe |(Z/nZ)∗| = ϕ(n).

8

2.7 Ringe

Wieso schreiben wir nun (Z/nZ)∗? Der Grund: auf Z/nZ kann man immer eine
Struktur bilden, die sich Ring nennt. Es gibt dann immer zwei Operationen (wie
bei Körpern), die man oft + und · schreibt.
Ein Ring sieht dann so aus: (Z/nZ,+, ·)
Nun ist + das normale +, es ist assoziativ, kommutativ und invertierbar. Anders
ist es mit ·, das muss nicht kommutativ und nicht invertierbar sein.
Wenn wir nun (Z/nZ,+, ·)∗ schreiben (oder auch einfach (Z/nZ)∗), dann meinen
wir damit die größtmögliche Teilmenge von Z/nZ, die unter · eine Gruppe bildet,
bzw. meinen wir damit diese Gruppe.
Dass diese immer existiert will ich kurz demonstrieren, nehmen wir R als
beliebigen Ring: Betrachten wir M = {x ∈ R | ∃y ∈ R : xy = 1R }. 1R ist hier
das neutrale Element von R bezüglich der Multiplikation.
Wir wissen, dass

• Die Multiplikation assoziativ ist

• Es existieren immer inverse (nach Definition)

• Es gibt ein neutrales Element, nämlich 1R, was natürlich auch in M
enthalten ist, da 1R immer 1R · 1R = 1 als inverses hat.

Somit ist M eine Gruppe,

2.8 Homomorphismen

Diese sind sehr ähnlich zu linearen Abbildungen auf Vektorräumen, betrach-
ten beliebige Gruppen (A, ◦) und (B, ⋆). Eine Abbildung T : A → B ist ein
Homomorphismus von A auf B, wenn für alle x, y ∈ A:

T (x ◦ y) = T (x) ⋆ T (y)

Wie bei linearen Abbildungen kann man den Kern kerT definieren:

kerT = { a ∈ A | T (a) = eB }

also alle Elemente, die auf das neutrale Element abgebildet werden.
Tatsächlich, wie bei lin. Abb., gilt T bijektiv ⇐⇒ kerT = { eA }. Falls T
bijektiv ist, nennen wir T auch einen Isomorphismus und schreiben A ∼= B, da
A und B auf gewisse Art und Weise einfach gleich sind. (z.B.haben sie dann
immer einander entsprechende Elemente)
Betrachten wir eine interessante Eigenschaft von kerT , denn für jedes b ∈ B
mit ∃a ∈ A : T (a) = b:

|T−1(b)| = | kerT |

9

Kurzer Beweis: Sei k ∈ kerT beliebig, dann T (a ◦ k) = b ⋆ eB. Da jedes a ◦ k
unterschiedlich ist von jedem anderen muss |T−1(b)| ≥ | kerT |, die Gleichheit
gilt auch, allerdings will ich diese hier nicht beweisen.

2.9 Primitive Elemente

Definition 2.25. Ein primitives Element einer Gruppe (M, ◦) ist ein g ∈ M ,
sodass für jedes x ∈ M :

∃n ∈ N : x = gn

gn ist hier einfach die n-fache Ausführung von ◦. z.B.g2 = g ◦ g und g1 = g.

Man nennt g auch einen Generator von (M, ◦).
Nicht alle Gruppen haben primitive Elemente, wenn sie eins haben, dann nennt
man diese Gruppen zyklisch.

Satz 2.26. Sei (M, ◦) eine zyklische Gruppe mit |M | = m < ∞

M ∼= Z/mZ

Wenn wir also zyklische Gruppen studieren wollen, können wir genauso gut
Z/mZ studieren.

Beispiel 2.27. Wir wollen wissen, wie viele primitive Elemente eine endliche
zyklische Gruppe (M, ◦) hat.

Nun haben wir M ∼= Z/mZ, was bedeutet, dass diese Gruppen bis auf eine
Umbenennung der Elemente gleich sind.
Dadurch wissen wir, dass die Anzahl der primitiven Elemente in beiden Gruppen
gleich sein muss. Was sind die primitiven Elemente von Z/mZ?
Die Zahlen, die coprim zu m sind.
Somit ist die Anzahl an primitiven Elementen in Z/mZ und damit auch in M :

ϕ(m)

Hier wieder die Euler-ϕ-Funktion.

Notiz 2.28. Da Z/mZ abelsch ist und Z/mZ ∼= M ist auch M abelsch.
Jede zyklische Gruppe ist abelsch.

2.10 Ordnung

Definition 2.29. Sei (M, ◦) eine Gruppe. Für x ∈ M nennen wir ord(x) die
Ordnung von x und meinen damit die kleinste Zahl n ∈ N mit xn = eM .

z.B.falls M zyklisch ist, gilt für primitive Elemente g:

ord(g) = |M |

Es gilt beispielsweise auch immer ord(eM) = 1

10

Satz 2.30 (Satz von Lagrange). Für alle x ∈ M :

ord(x) | |M |

Es gibt auch eine stärkere Variante wenn M zyklisch ist, also primitive Elemente
besitzt.

Satz 2.31. Sei g ein primitives Element von M und x ∈ M , dann nennen wir
logg(x) die kleinste Zahl aus N mit glogg(x) = x. Nun gilt

ord(x) · gcd(logg(x), |M |) = |M |

2.11 Direkte Summe

Hier wird es so richtig interessant!
Mit dem Isomorphismus zwischen zyklischen Gruppen und Z/mZ lassen sich
viele Fragestellungen auf sehr viel einfachere Strukturen reduzieren. Aber was
ist, wenn wir nur eine abelsche Gruppe (M, ◦) haben, die nicht zyklische ist?
Hier kommt die direkte Summe ⊕ ins Spiel:

Definition 2.32. Seien (A, ◦) und (B, ⋆) zwei abelsche Gruppen, dann ist
(A, ◦)⊕ (B, ⋆) (oder kurz A⊕B) folgende Gruppe:

• Die Menge ist A×B, das kartesische Produkt beider Mengen, die Menge
aller möglichen Paare

• Die Gruppenoperation ♡ : A×B → A×B mit

(a1, b1)♡(a2, b2) 7→ (a1 ◦ a2, b1 ⋆ b2)

ist einfach nur die komponentenweise Anwendung der einzelnen Gruppen-
operationen

Somit A⊕B = (A×B,♡). Für A⊕A⊕A schreiben wir A3.

Nun was könnte die viel einfachere Struktur aus der Einleitung sein?

Satz 2.33. Jede abelsche Gruppe (M, ◦) lässt sich als direkte Summe von
zyklischen Gruppen schreiben:

M ∼=
⊕
p∈P

⊕
n∈N

(Z/pnZ)µ(p,n)

Hier ist µ(p, n), wie oft die Gruppe Z/pnZ in der Zerlegung auftaucht.

Die Gruppen Z/pnZ lassen sich übrigens nicht in weitere Gruppen zerlegen,
somit ist auch die Zerlegung von M eindeutig (bis auf andere Reihenfolge bei
der Summierung)

11

Lemma 2.34. Seien (A, ◦) und (B, ⋆) zwei abelsche Gruppen und a ∈ A, b ∈ B,
dann

ord(a, b) = lcm { ord(a), ord(b) }

Beispiel 2.35. Betrachten wir die abelsche aber nicht zyklische Gruppe (Z/15Z)∗.
Hierfür gilt

(Z/15Z)∗ ∼= (Z/3Z)∗ ⊕ (Z/5Z)∗

Was übrigens aus einem wichtigen Theorem namens Chinesischer Restsatz folgt.

Satz 2.36 (Chinesischer Restsatz). Sei a, b ∈ N mit a und b comprim. Nun ist

γ : Z/aZ⊕ b → Z/aZb

mit
(a, b) 7→ ab

ist immer ein Isomorphismus.

Wenn man nun γ einschränkt:

β : (Z/aZ)∗ ⊕ (Z/bZ)∗ → (Z/abZ)∗

mit β(x) = γ(x) für alle x ∈ (Z/aZ)∗ ⊕ (Z/bZ)∗ dann erhält man wiederum
einen Isomorphismus.
Nehmen wir für dieses Beispiel nun die Aufgabe, eine Menge M ⊂ (Z/15Z)∗ zu
finden, sodass man jedes x ∈ (Z/15Z)∗ als Kombination von Elementen aus M
unter Multiplikation (der Gruppenoperation) schreiben kann.
Da (Z/15Z)∗ nicht zyklisch ist, muss |M | > 1.
Nun sind aber (Z/3Z)∗ und (Z/1Z)∗5 zyklisch mit jeweils 2 und 3 als generie-
renden Elementen.
Somit muss { (2, 1), (1, 3) } eine generierende Menge von (Z/3Z)∗⊕ (Z/5Z)∗ sein,
also dass man jedes Element von der Gruppe als Kombination schreiben kann.
Jetzt haben wir noch den Isomorphismus zu (Z/15Z)∗, somit gibt es korrespon-
dierende Elemente für (2, 1) und (1, 3).
Was sind diese Elemente?
Unter einem Isomorphismus wie β wären dass 2 · 1 = 2 und 1 · 3 = 3. Somit
M = { 2, 3 }

2.12 Die Direkte Summe und Ringe

In diesem Paper werde ich viel implizit mit der Direkten Summe von Ringen und
dann der Multiplikativen Gruppe davon arbeiten: (A⊕ B)∗. Deswegen möchte ich
noch kurz die Verträglichkeit dieser beiden Operationen ⊕ und (□)∗ beweisen.

Lemma 2.37. Nehmen wir zwei Ringe A und B.

A∗ ⊕ B∗ ∼= (A⊕ B)∗

12

Beweis.

(A⊕ B)∗
∼= { (a, b) | a, b ∈ A,B }∗

∼= { (a, b) | a, b ∈ A,B ∧ (∃a−1, b−1 : a · a−1 = 1A ∧ b · b−1 = 1B) }
∼= { (a, b) | a ∈ A∗ ∧ b ∈ B∗ }
∼= A∗ ⊕ B∗

3 Einleitung

Worum geht es hier überhaupt? Gegeben eine beliebige Zahl m ∈ N und die
zugehörige Multiplikationsabbildung M : N → N, x 7→ mx, was ist die Anzahl
an Orbits modulo eine andere Zahl.
Ein Orbit ist die Menge aller Zahlen, die von einer bestimmten Zahl und die
Anwendung von M erreicht werden können. z.B. sei der Zyklus von 1 z1, dann

1 ∈ z1

∀x0 ∈ z1 : M(x0) ∈ z1

Nun fehlt noch der modulo Teil, also sei noch gegeben n ∈ N. Dazu modifizieren
wir noch Mn : N → N, x 7→ mx mod n. Jetzt dürfte auch die Definition von
Orbits mehr Sinn ergeben, da diese jetzt endlich endlich sein müssen und nicht
einfach nur aus Vielfachen von m bestehen.

3.1 Ein paar Beispiele

Wählen wir m = 3

Für n = 1 bekommen wir (mod 1) mit Z/1Z = { [0] } als Menge, die wir uns
anschauen wollen. Dieser Fall ist trivial, da es nur einen möglichen Wert gibt
und somit nur einen Orbit mit nur einem Element.
Für n = 2 bekommen wir (mod 2) mit Z/2Z = { 0, 1 }
M(0) = 0 mod 2 = 0
M(1) = 3 mod 2 = 1
Somit 0 7→ 0 und 1 7→ 1 als die zwei Orbits.

Notiz 3.1. Hier möchte ich gerne etwas Notation einführen, um den Orbits
einen sinnvollen Namen zu geben:
Falls x, y ∈ Z/nZ im gleichen Orbit unter Mn liegen, dann werde ich in diesem
Paper x ⊜m,n y schreiben und x ̸⊜m,n y, falls nicht.
Sei also [x]⊜m,n

der Orbit von x unter Mn, also alle Zahlen, die von x aus mit
Mn erreichbar sind (x inklusive).

13

Somit noch die Definition von Orbits

x ∈ [x]⊜m,n

∀x0 ∈ [x]⊜m,n
: Mn(x0) ∈ [x]⊜m,n

Für n = 4 bekommen wir (mod 4) mit Z/4Z = { 0, 1, 2, 3 }
M(0) = 0 mod 4 = 0
M(1) = 3 mod 4 = 3
M(2) = 6 mod 4 = 2
M(3) = 9 mod 4 = 1
Somit sind die Orbits Ω3,4 = { [0]⊜3,4

, [1]⊜3,4
, [2]⊜3,4

}

Notiz 3.2. Zu Ωm,n: Wenn es eindeutig ist, wird in diesem Artikel auch einfach
Ω geschrieben

Für n = 8 bekommen wir (mod 8) mit Z/8Z = { 0, 1, 2, 3, 4, 5, 6, 7 }
M(0) = 0
M(1) = 3
M(2) = 6
M(3) = 1
M(4) = 4
M(5) = 7
M(6) = 2
M(7) = 5
Ok.... so langsam wird es schwierig, hier noch den Überblick zu behalten, also
mal die Zyklen ausgeschrieben:
0
1 7→ 3
2 7→ 6
4
5 7→ 7 (hier ist auch immer implizit der Pfeil zurück zum Anfang dabei)
Somit sind die Zyklen Ω = { [0]⊜3,4

, [1]⊜3,4
, [2]⊜3,4

, [4]⊜3,4
, [5]⊜3,4

} mit |Ω| = 5

Nun versuchen wir das ganze Mal mit Gruppentheorie auszudrücken. Wählen wir
n ∈ P, denn dann ist (Z/nZ)∗ immer zyklisch (Tatsächlich ist auch ((Z/n□Z)∗, ·)
immer zyklisch).
Nun ist

|Ω| = |(Z/nZ)∗|
ord(m)

=
ϕ(n)

ord(m)
=

n− 1

m

Beweis.
|[m]⊜m,n

| = ord(m)

Für jedes x ∈ (Z/nZ)∗ können wir nun [x]⊜m,n
betrachten.

Entweder gilt x ∈ [m]⊜m,n
, dann gilt [m]⊜m,n

= [x]⊜m,n
.

14

Oder [x]⊜m,n
= x[m]⊜m,n

.
Betrachten wir ein Element mt aus [m]⊜m,n

mit t ∈ N.
Nun gilt x(mmt) = m(xmt), und [x]⊜m,n

= x[m]⊜m,n
.

Wie wir hier sehen können hängt |Ω| von ord(m) in einer Gruppe ((Z/□Z)∗) ab,
diesen Zusammenhang betrachten wir aber besser später. Fürs erste

4 Die Ordnung unter Homomorphismen

Betrachten wir zwei Gruppen Z/pnZ und Z/nZ mit n ∈ N und p ∈ P und dazu
den surjektiven Homomorphismus γ : Z/pnZ → Z/nZ mit x → x mod n.

Lemma 4.1. Für Z/mZ mit m ∈ N gilt:

ord(x) =
m

gcd(x,m)

Beweis. Wir suchen ord(x), also das kleinste k ∈ N mit kx ≡ 0 (mod m)

kx ≡ 0 (mod m) ⇐⇒ m | kx ⇐⇒ m = gcd(m, kx)

⇐⇒ k | m

gcd(m,x)

Da k ∈ [1,m], ist das kleinste k: m
gcd(x,m)

Betrachten wir alle t ∈ Z/nZ mit 0 ≤ t < n und t+ in ∈ Z/pnZ mit 0 ≤ i < p.
Versuchen wir nun ordZ/pnZ(t+in) in Abhängigkeit von ordZ/nZ(t) zu bestimmen
(ordZ/nZ steht hier für die Ordnung in ordZ/nZ):

ordZ/pnZ(t+ in) =
pn

gcd(t+ in, pn)

gcd(t+ in, pn) = gcd

(
t+ in, pvp(n)+1 · n

pvp(n)

)
pvp(n)+1 ist hier p · die p-Primfaktoren von n und n

pvp(n) sind alle anderen
Primfaktoren.

gcd

(
t+ in, pvp(n)+1 · n

pvp(n)

)
= gcd

(
t+ in, pvp(n)+1

)
· gcd

(
t+ in,

n

pvp(n)

)

die Faktoren coprim sind, kann man die Terme auseinanderziehen.

gcd

(
t+ in,

n

pvp(n)

)
= gcd

(
t,

n

pvp(n)

)
gcd(t+ in, pvp(n)+1) = pmin(vp(t+in),vp(n)+1)

Für min(vp(t+ in), vp(n) + 1) ergeben sich folgende Fälle:

15

i = 0 i ̸= 0

t = 0 vp(n) + 1 vp(n)

vp(t) < vp(n) vp(t) vp(t)

vp(t) = vp(n) vp(t)

{
vp(n) + 1 für ein i

vp(n) sonst

Für interessierte Lesende ist das außergewöhnliche i ≡ −t · n−1 (mod p).

Beweis für i = 0 ∧ t = 0.

min { vp(t+ in), vp(n) + 1 } = min { vp(0), vp(n) + 1 }
= min {∞, vp(n) + 1 }
= vp(n) + 1

Beweis für i ̸= 0 ∧ t = 0.

min { vp(in), vp(n) + 1 } = min { vp(n), vp(n) + 1 }
= vp(n)

da vp(i) = 0, weil 0 < i < p.

Beweis für i = 0 ∧ t ̸= 0.

min { vp(t), vp(n) + 1 } = vp(t)

da vp(t) < ∞, weil t ̸= 0 und da vp(t) < vp(n)− 1, weil 0 < t < n.

Beweis für i ̸= 0 ∧ vp(t) < vp(n).

min { vp(t+ in︸︷︷︸
vp(in)=vp(n)

), vp(n) + 1 } = min { vp(t), vp(n) + 1 }

= vp(t)

Beweis für i ̸= 0 ∧ vp(t) = vp(n).

min { vp(t+ in), vp(n) + 1 }

ist entweder vp(n) oder vp(n) + 1.
Es ist vp(n)+1 genau dann, wenn pvp(n)+1 | t+ in. Da t | n können wir schreiben

16

pvp(n)+1 | t(t+ i · n · t−1).
pvp(n) | t womit p | t+ i · n · t−1 äquivalent ist.
Dann mit Moduloschreibweise: t+ i · n · t−1 ≡ 0 (mod p)
Da t nur ein additives Inverses hat in Z/pZ und n · t−1 coprim zu p ist, kann die
Aussage nur für ein 0 < i < p gelten.

Jetzt können wir die Ordnung so schreiben:

ordZ/pnZ(t+ in) =
pn

gcd(t, n
pvp(n)) · pmin{ vp(t+in),vp(n) }

Dieser Ausdruck ist nicht der praktischste in der Anwendung deswegen möchte
ich eine Konstante einfügen:

ordZ/pnZ(t+ in) = c · ordZ/nZ(t)

nun die Werte für c:

i = 0 i ̸= 0

t = 0 1 p

vp(t) < vp(n) p p

vp(t) = vp(n) p

{
1 für ein i

p sonst

Die Faktoren können Sie gerne selbst nachrechnen, die ursprüngliche Tabelle
sollte da eine große Hilfe sein.
Versuchen wir nun dieses Prinzip anzuwenden für

5 ord(m) in (Z/pkZ)∗

mit p ∈ P \ { 2 } und m, k ∈ N mit p ∤ m.

Hierfür betrachten wir erst mal zwei endliche zyklische Gruppen (M̂, ◦), (M, ◦)
und einen surjektiven Homomorphismus γ : M̂ → M .
Sei g ein primitives Element von M̂ .

Lemma 5.1. γg ist ein primitives Element von M .

Beweis. Wir wissen

M̂ = { gk | k ∈ N ∧ k ∈ [0, | M̂ |) }

17

Da γ surjektiv ist, gilt γM̂ = M und somit

M = { (γg)k | k ∈ N ∧ k ∈ [0, | M̂ |) }

Corollary 5.1.1. Somit gilt auch

kerT = { gk | M | | k ∈ N ∧ k ∈ [0,
M̂

M
) }

da ord(γg) = |M | und somit (γg)k = eM

Corollary 5.1.2.
|M | | |M̂ |

Nun können wir die Gruppen (Z/p1Z)∗, (Z/p2Z)∗, (Z/p3Z)∗, . . . und ord(m) für
ein beliebiges m ∈ N mit p ∤ m betrachten. Es ist hier wichtig, dass p ∈ P \ { 2 },
da

Satz 5.2.

(Z/nZ)∗ zyklisch ⇐⇒ n = 1 ∨ n = 2 ∨ n = 4 ∨ n = pk ∨ n = 2pk für p ∈ P

Was von Gauss bewiesen wurde.
Betrachten wir nun ord(Z/pk+1Z)∗(x) in Abhängigkeit von ord(Z/pkZ)∗ :

Wir wissen, da p ̸= 2, dass (Z/pkZ)∗ und (Z/pk+1Z)∗ zyklisch sind und somit.

(Z/pkZ)∗ ∼= Z/ϕ(pk)Z
(Z/pk+1Z)∗ ∼= Z/ϕ(pk+1)Z

Dieser Isomorphismus ist nicht kanonisch, es gibt also mehr als eine Bijektion
zwischen den Gruppen. Somit legen wir ein beliebiges primitives Element g von
(Z/pk+1Z)∗ fest und definieren die Bijektionen γk : Z/ϕ(pk)Z → (Z/pkZ)∗ mit
l 7→ gl. Nun haben wir γ−1

k (m mod pk) ∈ Z/pkZ.
Nun stellt sich die Frage, ob ord(m) für bestimmte k irgendwann in einfache
Muster fällt. Betrachten wir hierfür pvp(γ

−1
k (m mod pk)). Der Faktor, um den es

sich verändert ist:

i = 0 i ̸= 0

t = 0 p 1

vp(t) < vp(n) 1 1

vp(t) = vp(n) 1

{
p für ein i

1 sonst

18

also p
c .

pvp(ϕ(p
k)) verändert sich auch immer um einen Faktor von p.

Falls also vp(γ
−1
k (m mod pk)) < vp(ϕ(p

k)) bleibt vp(γ
−1(m mod pk)) immer

gleich, da vp(ϕ(p
k)) streng monoton wächst. Wie die Senke bei DFAs.

Falls m ≡ 1 (mod p), also γ−1
1 (m mod p) = 0 gilt für jedes k:

vp(γ
−1
k (m mod pk)) = vp(γ

−1
k−1(m mod pk−1)) ·

{
p falls m ≡ 1 (mod pk−1)

1 falls m ̸≡ 1 (mod pk−1)

Ab dem kleinsten k für das gilt m ̸≡ 1 (mod pk) ist die Sequenz in der Senke.
Falls m ≡ −1 (mod p), also γ−1

1 (m mod p) = p−1
2 gilt für jedes k:

vp(γ
−1
k (m mod pk)) = vp(γ

−1
k−1(m mod pk−1))·

{
p falls m ≡ −1 (mod pk−1)

1 falls m ̸≡ −1 (mod pk−1)

Ab dem kleinsten k für das gilt m ̸≡ −1 (mod pk) ist die Sequenz wieder in der
Senke.
Die letzten p − 3 Fälle sind etwas komplexer zu beschreiben, statt Gleichheit
mit 1 oder −1 ist für · p Gleichheit mit der p-adischen Zahl z notwendig, für die
gilt zγ

−1
1 (m mod p). In anderen Worten, es gilt für jedes k:

vp(γ
−1
k (m mod pk)) = vp(γ

−1
k−1(m mod pk−1)) ·

{
p falls me ≡ 1 (mod pk−1)

1 falls me ̸≡ 1 (mod pk−1)

mit e = γ−1
1 (m mod p). Ab dem kleinsten k für das gilt me ̸≡ 1 (mod pk) ist

die Sequenz wieder in der Senke.
Kleiner fun fact: Die vorherigen beiden Fälle mit m ≡ 1 und m ≡ −1 kann man
auch auf diese Weise schreiben.
Wie wir hier sehen, gibt es in jedem Fall ein k0, sodass

∀k ≥ k0 : me ̸≡ 1 (mod pk)

Nun ergibt sich:

ord(Z/pkZ)∗(m) = ord(Z/pZ)∗(m) · pmax{ 0,k−k0+1 }

da e = γ−1
1 (m mod p) = ord(Z/pZ)∗(m)

Was hat das nun mit Orbits zu tun?

6 Die Verbindung zwischen ord und |Ω|

Betrachten wir erst einmal für m ∈ N, p ∈ P und k ∈ N+ mit p ∤ m die Abbildung
Mpk : Z/pkZ → Z/pkZ mit x 7→ mx. Stellen wir folgendes fest:

vp(x) = vp(Mpk(x))

19

da p ∤ m. Somit lässt sich die Wertemenge von Mpk , also Z/pkZ, in k-Submengen
aufteilen, die geschlossen unter der Anwendung von Mpk sind.

Notiz 6.1. Für eine Funktion f : A → B und X ⊂ A ist f |X : X → B die
Einschränkung von f auf die Definitionsmenge X.

Die Orbits von Mpk sind also genau die Orbits von

Mpk |{ [n·p0]|n∈Z },Mpk |{ [n·p1]|n∈Z },Mpk |{ [n·p2]|n∈Z }, . . .

. . . ,Mpk |{ [n·pk−1]|n∈Z },Mpk |{ [n·pk]|n∈Z }

zusammengenommen, also die Orbits von den Zahlen für die vp(□) = 1, für die
vp(□) = 2, . . . , für die vp(□) = k − 1 und für die vp(□) = k.
Nun ist für jedes 0 ≤ k♡ ≤ k die Länge des Orbits von mpk♡

|[mpk♡]⊜| = ord(Z/pk−k♡Z)∗(m)

Was steht hier also? Die Länge des Orbits von mpk♡ ist, wie oft man Mpk

anwenden muss, bis man wieder mpk♡ erhält. ord ist, wenn man bei 1 anfängt,
wie oft man mit m multiplizieren muss, bis man wieder 1 erhält.
Warum kann man hier das eine durch das andere ersetzen? Ein anschauliches
Beispiel:
Sei p = 10 eine Primzahl und sei m = 3. Betrachten wir die Orbits Ω3,102 .
Betrachten wir vor allem einen, den von 10:

10 7→ 30 7→ 90 7→ 70

Dies ist genau der von 1 (mod 10):

1 7→ 3 7→ 9 7→ 7

nur multipliziert mit 10.
Der Grund hierfür ist ziemlich offensichtlich. Es ist egal, wenn wir mit 3 multipli-
zieren, ob noch Nullen an der Zahl hängen oder nicht. 10 ist nun keine Primzahl,
aber das gleiche Prinzip lässt sich auch auf andere Basen anwenden.

Nun wissen wir für alle pk♡ die Länge des Orbits. Dies sagt uns auch die
Länge aller anderen Orbits von □ · pk♡ . Nehmen wir ein 0 ≤ k♡ ≤ k und ein
x ̸∈ [k♡]⊜ = [mk♡]⊜ mit vp(x) = k♡:

[x]⊜ = { ox | o ∈ [k♡]⊜ }

D.h. die Länge aller Orbits mit gleicher Wertigkeit ist gleich, nämlich ord(Z/pk−k♡Z)∗ (m).
Was ist dann die Anzahl der Orbits mit Wertigkeit k♡? Die Anzahl an möglichen
Werten durch die Länge eines Orbits: ϕ(pk−k♡)/ ord(Z/pk−k♡Z)∗(m).

Somit
|Ωm,pk |

=

k∑
k♡=1

ϕ(pk−k♡)/ ord(Z/pk−k♡Z)∗(m) + 1

=

k−1∑
k♡=0

ϕ(pk♡)/ ord(Z/pk♡Z)∗(m) + 1

=

k−1∑
k♡=0

(p− 1)pk♡−1

ord(Z/pZ)∗(m) · pmax(0,k♡−k0+1)
+ 1

=
p− 1

ord(Z/pZ)∗(m)

k−1∑
k♡=0

pk♡−1

pmax(0,k♡−k0+1)
+ 1

=
p− 1

ord(Z/pZ)∗(m)

k−1∑
k♡=0

pk♡−1−max(0,k♡−k0+1) + 1

=
p− 1

ord(Z/pZ)∗(m)

k−1∑
k♡=0

1

p

max(0,k♡−k0+1)+1−k♡

+ 1

=
p− 1

ord(Z/pZ)∗(m)

k−1∑
k♡=0

1

p

max(−k♡,−k0+2)

+ 1

=
p− 1

ord(Z/pZ)∗(m)

k−1∑
k♡=0

pmin(k♡,k0−2) + 1

=
p− 1

ord(Z/pZ)∗(m)

min(k−1,k0−2)∑
k♡=0

pk♡ +

k−1∑
k♡=

min(k−1,k0−2)+1

pk0−2

+ 1

=
p− 1

ord(Z/pZ)∗(m)

min(k−1,k0−2)∑
k♡=0

pk♡ + (k − 1−min(k − 1, k0 − 2))pk0−2

+ 1

=
p− 1

ord(Z/pZ)∗(m)

min(k−1,k0−2)∑
k♡=0

pk♡ − (−k + 1 +min(k − 1, k0 − 2))pk0−2

+ 1

=
p− 1

ord(Z/pZ)∗(m)

min(k−1,k0−2)∑
k♡=0

pk♡ − (min(0, k0 − k − 1))pk0−2

+ 1

=
p− 1

ord(Z/pZ)∗(m)

min(k−1,k0−2)∑
k♡=0

pk♡ +max(0, k − k0 + 1)pk0−2

+ 1

=
p− 1

ord(Z/pZ)∗(m)

(
pmin(k,k0−1) − 1

p− 1
+ max(0, k − k0 + 1)pk0−2

)
+ 1

=
1

ord(Z/pZ)∗(m)

(
pmin(k,k0−1) − 1 + (p− 1)max(0, k − k0 + 1)pk0−2

)
+ 1

7 ord(m) in (Z/2nZ)∗

Nun zu einer interessanten Frage, warum haben wir im letzten Abschnitt nicht
gleich die Formel auch für 2n gezeigt? Die einfache Antwort ist, dass (Z/2nZ)∗
nicht zyklisch ist, allerdings lässt sich ein fast gleicher Beweis auch hier durch-
führen, was ich in dem folgenden Abschnitt machen werde.
Zuallererst benötigen wir hierfür die Struktur von (Z/2nZ)∗:
{ 3,−1 } ist ein generierendes System für (Z/2nZ)∗, also für jedes x ∈ (Z/2nZ)∗:

∃a, b ∈ N ∪ { 0 } ,a < 2n−1, b < 2 : x ≡ 3a · (−1)b (mod 2n)

Schritt 1; 3 ist ein primitives Element von (Z/2Z)∗, (Z/4Z)∗:

(Z/2Z)∗ = { [1] } : 1 7→ 1

(Z/4Z)∗ = { [1], [3] } : 1 7→ 3 7→ 1

Nun betrachten wir induktiv ord(3) und versuchen zu zeigen, dass

ord(Z/2nZ)∗ = 2n−2

Nehmen wir an für ord(Z/2nZ)∗(3) = 2n−2:
Es gibt zwei Fälle.

• ord(Z/2n+1Z)∗ = 2n−2

• ord(Z/2n+1Z)∗ = 2n−1

Betrachten wir nun vp(3
2n−2 − 1) und vp(3

2n−2

+ 1).
vp(3

1) + 1 = 2 und vp(3
2n) + 1 = 1 für n ∈ N.

Für n = 2 gilt vp(3
20 − 1) = vp(3

1 − 1) = vp(2) = 1

Nehmen wir an, dass vp(3
2n−2 − 1) = n− 1 mit n > 2:

vp(3
2n−1

− 1) = vp((3
2n−2

)2 − 12)

= vp((3
2n−2

− 1)(32
n−2

+ 1))

= vp((3
2n−2

− 1)) + vp((3
2n−2

+ 1))

= n− 1 + 1 = n

Somit muss vp(3
2n−2

) = n− 1.

Damit muss 32
n−2

= 3ord(Z/22−1Z)∗ = 2n−1 und ord(Z/2nZ)∗ > ord(Z/2n−1Z)∗ . Also
ord(Z/2nZ)∗ = 2n−1, da ord(Z/2n−1Z)∗ | ord(Z/2nZ)∗ .

Schritt 2; ∄x ∈ N : 3x ≡ −1 (mod 2n):
Für (Z/8Z)∗: 1 7→ 3 7→ 1.
Allerdings 2n − 1 ≡ −1 (mod 8)

22

Man kann ord(Z/2n−2Z)∗(3) Werte als 3-er Potenz darstellen, wenn man dann
noch mit −1 multipliziert, kann man

2 · ord(Z/2nZ)∗(3) = 2 · ord(Z/2·2n−2Z)∗ = 2n−1 = |(Z/2n−1Z)∗|

verschiedene Werte darstellen.
Somit ist { 3,−1 } ein generierendes System von (Z/2nZ)∗.
Nun muss

(Z/2nZ)∗ ∼= Z/2n−2Z⊕ Z/2Z

Wählen wir folgenden Isomorphismus:

γ : 2n−2 ⊕ Z/2Z → (Z/2nZ)∗

(a, b) 7→ 3a · (−1)b

oder äquivalent:
t 7→ 3t1 · (−1)t2

mit t ∈ N2 und für t = (a, b), t1 = a und t2 = b.
Wir wissen, dass G = ({ [3l]≡ (mod 2n) | l ∈ N } , ·) ∼= (Z/2n−2Z,+) und somit

ord(Z/2nZ)∗(m) = lcm(ordZ/2n−2Z(γ
−1

1(m)), ordZ/2Z(γ
−1

2(m)))

= lcm(ordG(m), ordZ/2Z(γ
−1

2(m)))

in der letzten Zeilen müsste man eigentlich ordZ/2Z(γ|γ(G)
−1

2
(m)) schreiben,

was allerdings etwas unübersichtlich ist.

ordZ/2Z(γ
−1

2(m)) =

{
1

2
falls γ−1

2(m) = 0
γ−1

2(m) = 1

G allerdings, ist zyklisch, das heißt wir können die Tabelle für v2 anwenden.

i = 0 i ̸= 0

t = 0 v2(n) + 1 v2(n)

v2(t) < v2(n) v2(t) v2(t)

v2(t) = v2(n) v2(t)

{
v2(n) + 1 für ein i
v2(n) sonst

Allerdings ist v2(t) = v2(n) nur möglich, wenn t = 0, somit kann man die letzte
Zeile weglassen:

23

i = 0 i ̸= 0

t = 0 v2(n) + 1 v2(n)

v2(t) < v2(n) v2(t) v2(t)

Wir haben, wie in dem letzten Abschnitt, also wieder ein k0 ab dem für alle
n ≥ k0 gilt: γ−1

1(m) ̸= 0 oder auch m ̸≡ 1 (mod 2n).
Wenn m = 3□ · (−1)0, dann ist

ord(Z/2nZ)∗(m) = 2max(0,n−k0+1)

Wenn m = 3□ · (−1)1, dann ist

ord(Z/2nZ)∗(m) = lcm(ord(Z/2nZ)∗(−1), ord(Z/2nZ)∗(−m))

Für n ≤ 1 gilt ord(Z/2nZ)∗(−1) = 1.
Für n ≥ 2 gilt ord(Z/2nZ)∗(−1) = 2.
Somit wenn m = 3□ · (−1)1 und n ≥ 2, dann ist

ord(Z/2nZ)∗(m) = lcm(2, ord(Z/2nZ)∗(−m))

Das k0 zu −m ist einfach die kleinste natürliche Zahl k0, ab die für alle n ≥ k0
gilt:
m ̸≡ −1 (mod 2n).
Somit können wir unsere Definition von k0 umschreiben zu m ̸≡ ±1 (mod 2n).

Hiermit ergibt sich dann die Formel:

ord(Z/2nZ)∗(m) =


1

2max(0,n−k0+1)

lcm(2, 2max(0,n−k0+1))

falls
n = 1
m ≡ 1 (mod 4)
m ≡ −1 (mod 4)

oder auch

ord(Z/2nZ)∗(m) =


1 falls n ≤ 1

2 falls m ≡ −1 (mod 2n)

2max(0,n−k0+1) sonst

Nun alles zusammenführen in

24

8 ord(Z/nZ)∗(m)

Sei n = pe · x mit p ∈ P, e = vp(n) und x = n
pe Betrachten wir nun den

Isomorphismus γ : (Z/peZ)∗ × (Z/xZ)∗ → (Z/pexZ)∗ mit (a, b) 7→ ab. Dies ist
ein Isomorphismus nach dem Chinesischen Restsatz, da pe und x coprim.
In anderen Worten

(Z/peZ)∗ ⊕ (Z/xZ)∗ ∼= (Z/pexZ)∗

Wir wissen somit auch, dass für alle m ∈ (Z/pexZ)∗:

ord(Z/pexZ)∗(m) = lcm

(
ord(Z/peZ)∗(m), ord(Z/xZ)∗(m)

)
Wenn wir nun die Primfaktorzerlegung n =

∏
p∈P p

vp(n) betrachten, dann gilt:

ord(Z/nZ)∗(m) = lcm { ord(Z/pvp(n)Z)∗(m) | p ∈ P }

Das gilt, da (Z/1Z)∗ = { [0] } und somit ord(Z/1Z)∗(m) = 1.
Warum lcm über alle Primzahlen? Wir wenden praktisch γ für jedes der einzelnen
p | n an.
Versuchen wir uns nun am Hauptthema-

9 |Ω|

Wir haben also m ∈ N und n ∈ N mit m und n coprim. Nun gilt:

|Ωm,n| =
∑
t|n

ϕ(nt)

ord(Z/n
t Z)∗(m)

Dies ist die gleiche Formel wie für |Ωm,pk | nur für allgemeine Zahlen. Der Beweis
funktioniert auch hier ähnlich, da m und n coprim sind und somit jeder Orbit
eine feste vp Wertigkeit hat. Hier ist nun die Wertigkeit für alle p | n gleich.

25

Versuchen wir die Formel etwas zu vereinfachen:∑
t|n

ϕ(nt)

ord(Z/n
t Z)∗(m)

=
∑
t|n

ϕ(nt)

lcm { ord(Z/pvp(n/t)Z)∗(m) | p ∈ P }

=
∑
t|n

ϕ(t)

lcm { ord(Z/pvp(t)Z)∗(m) | p ∈ P }

Trennen wir nun die Summe nach Primfaktoren auf

=

v2(n)∑
e0=0

vp1 (n)∑
e1=0

vp2 (n)∑
e2=0

· · ·
vp□ (n)∑
e□=0

ϕ(t)

lcm { ord(Z/pei
i Z)∗(m) | i ∈ N0 }

mit t =
∏
i∈N

peii

=

v2(n)∑
e0=0

vp1 (n)∑
e1=0

vp2 (n)∑
e2=0

· · ·
vp□ (n)∑
e□=0

ϕ(
∏
i∈N

peii)

lcm { ord(Z/pei
i Z)∗(m) | i ∈ N0 }

alle pi sind coprim

=

v2(n)∑
e0=0

vp1 (n)∑
e1=0

vp2 (n)∑
e2=0

· · ·
vp□ (n)∑
e□=0

∏
i∈N

ϕ(peii)

lcm { ord(Z/pei
i Z)∗(m) | i ∈ N0 }

Weiter zu vereinfachen wird sehr schnell sehr kompliziert, weswegen ich es in
diesem Paper nicht versuchen werde.
Da nun das Thema dieses Papers geklärt ist, möchte ich noch eine Anwendung
der Ergebnisse die Gruppenstruktur von (Z/nZ)∗ und ein ungenutztes Lemma
präsentieren.

10 Anwendungen

Die Formel für die Anzahl an Orbits bringt mich nicht auf irgendwelche Anwen-
dungsmöglichkeiten, anders ist es allerdings mit der allgemeinen Formel für die
Ordnung eines Elements. Es lässt sich daraus ein Algorithmus extrahieren, der
für bestimmte Zahlen sehr viel schneller ist als bisherige. Der Vorteil der Methode
dieses Papers ist, gegeben eine Zahl n =

∏
p∈P p

vp(n), dass der Algorithmus auch
sehr schnell ist für größere vp, anders als z.B. die Implementation von sympy
also Python.
Auf den folgenden Seiten ist meine Implementation der Methode dieses Papers
in Python:

26

1 from math import gcd , lcm
2
3
4 de f ca lcu late_k0 (in t ege r , prime) :
5 """Compute the k0 value f o r the
6 c a l c u l a t i o n o f the mu l t i p l i c a t i v e order .
7
8 : param in t e g e r : The number o f which we are
9 t ry ing to f i nd the order

10 : param prime : The prime
11 : r e tu rn s : The value f o r k0 , the sma l l e s t exponent
12 such that i n t e g e r ∗∗k0 i s
13 no longe r o f a s p e c i f i c form
14 """
15
16 i f gcd (in t ege r , prime) != 1 :
17 r a i s e ValueError (" i n t e g e r and prime"
18 + " should be coprime")
19
20 i f prime == 2 :
21 # The normal procedure won ’ t work here ,
22 # because n_order (in t ege r , 2)==1
23 # f o r every i n t e g e r
24 k0 = 2
25
26 whi l e True :
27 mask = (1 << k0) − 1 # 2∗∗k0 − 1
28 # Bit ope ra t i on s used here ,
29 # could a l s o beimplemented us ing %
30 i f (i n t e g e r & mask != 1
31 and −in t e g e r & mask != 1) :
32 break
33 k0 += 1
34 return k0
35
36 base_order = n_order (in t ege r , prime)
37
38 k0 = 2
39 # We are t ry ing to f i nd the sma l l e s t exponent ,
40 # so we are doing a s imple l i n e a r scan
41 whi l e pow(in t ege r , base_order , prime ∗∗ k0) == 1 :
42 k0 += 1
43
44 return k0
45
46

27

47 de f fast_order_prime_power (in t ege r , prime , exponent) :
48 """
49 Ca lcu la te the order o f i n t e g e r modulo prime∗∗ exponent
50 : param in t e g e r : The element
51 o f the mu l t i p l i c a t i v e group
52 : param prime : The base
53 : param exponent : The exponent
54 : r e tu rn s : The mu l t i p l i c a t i v e order
55 """
56
57 i f gcd (in t ege r , prime) != 1 :
58 r a i s e ValueError (" i n t e g e r and "
59 + "prime should be coprime")
60 i f exponent < 1 :
61 r a i s e ValueError (" exponent should "
62 + " be l a r g e r than 0")
63
64 k0 = ca lcu late_k0 (in t ege r , prime)
65
66 i f prime == 2 :
67 # powers o f two have a couple o f s p e c i a l t i e s
68 i f exponent == 1 : re turn 1
69 i f (i n t e g e r + 1) & ((1 << exponent) − 1) == 0 :
70 return 2
71
72 base_order = 1
73 e l s e :
74 base_order = n_order (in t ege r , prime)
75
76 return base_order
77 ∗ prime ∗∗ (max(0 , exponent − k0 + 1))
78
79
80 de f fas t_order (in t ege r , modulo) :
81 """ Ca lcu la t e the mu l t i p l i c a t i v e
82 order o f i n t e g e r mod modulo .
83
84 : param in t e g e r : The element o f the
85 mu l t i p l i c a t i v e group
86 : param modulo : The mod o f the group
87 : r e tu rn s : The order o f i n t e g e r
88 """
89
90 i f gcd (in t ege r , modulo) != 1 :
91 r a i s e ValueError (" i n t e g e r and"
92 + "modulo should be coprime")

28

93
94 order = 1
95
96 f o r prime , exponent in f a c t o r i n t (modulo) . i tems () :
97 order = lcm (
98 order ,
99 fast_order_prime_power (

100 in t ege r , prime , exponent)
101)
102
103 return order

Die fast_order Methode ist, bis auf den dahinterliegenden Algorithmus, äqui-
valent zu n_order von sympy.
Vergleichen wir nun die Laufzeit:

Element Primzahl Exponent Zeit
Normal

Zeit
Schnell

Zeit Normal
log2

Zeit Schnell
log2

3 2 1 0.00 0.00 -17.3 -15.4
3 2 10 0.00 0.00 -14.8 -15.6
3 2 100 0.00 0.00 -13.7 -15.7
3 2 1000 0.00 0.00 -7.9 -15.3
3 2 10000 2.21 0.00 1.1 -13.5
2 3 1 0.00 0.00 -15.9 -15.2
2 3 10 0.00 0.00 -15.1 -15.0
2 3 100 0.00 0.00 -12.2 -14.1
2 3 1000 0.03 0.00 -5.0 -13.3
2 3 10000 19.82 0.00 4.3 -10.3

Element ist m, die Zahl mit der wir multiplizieren. Primzahl p und Exponent
e sind pe = m, das die Gruppe angibt (Z/peZ)∗. Zeit Normal ist die Zeit (in
Sekunden), die n_order für den Aufruf benötigt. Zeit Schnell ist die Zeit, die
meine Implementation braucht. Die log Zeiten sind log2(t), also der zweite
Logarithmus von der Zeit t.
Folgender Code wurde verwendet, um die Tabelle zu erstellen:

1 from math import gcd , log2
2 from t ime i t import t ime i t
3
4 from sympy import n_order
5
6 p r i n t (" | Element | Primzahl | Exponent | Ze i t Normal | "
7 + " Ze i t Schne l l | l og Ze i t Normal | l og Ze i t Schne l l | ")
8 p r i n t (" | " + " −:| " ∗ 7)
9

10 f o r PRIME in [2 , 3] :

29

11 f o r EXPONENT in [10 ∗∗ n f o r n in range (5)] :
12 f o r MULT in [2 , 3] :
13 i f gcd (MULT, PRIME) != 1 :
14 cont inue
15
16 t_a = t ime i t (
17 lambda : n_order (MULT, PRIME ∗∗ EXPONENT) ,
18 number=1
19)
20 t_b = t ime i t (
21 lambda : fas t_order (MULT, PRIME ∗∗ EXPONENT) ,
22 number=1
23)
24
25 p r i n t (
26 f " | {MULT} | {PRIME} | {EXPONENT} | "
27 + f "{t_a : 0 . 2 f } | {t_b : 0 . 2 f } | "
28 + f "{ log2 (t_a) : 0 . 1 f } | { log2 (t_b) : 0 . 1 f } | ")

11 Struktur von (Z/nZ)∗

Ganz am Anfang dieses Papers habe ich die Direkte Summe eingeführt und
dabei ein wichtiges Theorem vorgestellt:

M ∼=
⊕
p∈P

⊕
k∈N

(Z/pkZ)µ(p,k)

Versuchen wir nun die Werte von µ(p, k) in Abhängigkeit von n zu bestimmen.
Durch den Chinesischen Restsatz wissen wir, dass

(Z/nZ)∗ ∼=
⊕
p∈P

(Z/pvp(n)Z)∗

Nun ist alles, was noch übrig ist, die Gruppen (Z/pvp(n)Z)∗ maximal zu zerlegen.
Für p ∈ Primes \ { 2 }

(Z/pvp(n)Z)∗ ∼=

{
Z/1Z
(Z/(p− 1)Z)⊕ (Z/(vp(n)− 1)Z)

falls vp(n) = 0
vp(n) > 0

Nun noch zu p = 2. Wir wissen ja bereits aus ord(m) in (Z/2nZ)∗

(Z/2v2(n)Z)∗ ∼=

{
Z/1Z
(Z/2Z)⊕ (Z/(v2(n)− 1)Z)

falls v2(n) = 0
v2(n) > 0

30

Nun ist Z/pnZ nicht mehr zerlegbar, Z/(p− 1)Z aber möglicherweise schon.
Versuchen wir nun eine Formel aufzustellen:

µ(p, k) = ifLvp(n) = k + 1M +
∑
q∈P
q|n

ifLvp(q − 1) = kM

ifL□M ist hier eine Funktion, die einen Wahrheitswert zu 1 oder 0 umwandelt:

ifLAM = 1 ⇐⇒ A

12 Appendix

Das folgende Lemma habe ich im Zuge des Beweises erstellt, habe es dann
schlussendlich nicht gebraucht. Nun habe ich es trotzdem dem Paper angehangen,
da ich es interessant finde.

12.1 Ω in A×B

Wir haben zwei endliche Mengen A und B und zwei bijektive Abbildungen
α : A → A und β : B → B. Da α und β bijektiv sind, müssen sich Orbits unter
ihnen ergeben, schreiben wir diese als Ωα und respektive Ωβ . Betrachten wir
Mpk |{ [n·p:]|n∈Z }A × B → A × B mit (a, b) 7→ (α(a), β(b)) und dessen Orbits
Ωα×β .

Lemma 12.1.
|Ωα×β | =

∑
ℵ∈Ωα
ℶ∈Ωβ

gcd(|ℵ|, |ℶ|)

Beweis. Seien ℵ ∈ Ωα und ℶ ∈ Ωβ :
Versuchen wir zu verstehen, wie viele Orbits es unter α× β|ℵ×ℶ gibt. Tatsächlich
können wir (ℵ × ℶ, α× β|ℵ×ℶ) als Gruppe sehen und somit

(ℵ × ℶ, α× β|ℵ×ℶ) ∼= (ℵ, α)⊕ (ℶ, β)

Sei für x ∈ M : [x]α der Orbit von x unter α.
z.B. für a ∈ ℵ gilt [a]α = ℵ
Betrachten wir nun a ∈ ℵ und b ∈ ℶ:

|[(a, b)]α×β|ℵ×ℶ | = lcm(|[a]α|, |[b]β)|

was aus der Direkten Summe folgt. Somit wissen wir aber auch, dass

|[(a, b)]α×β|ℵ×ℶ | = lcm(|ℵ|, |ℶ|)

31

und alle Zyklen unter α× β|ℵ×ℶ die gleiche Länge haben, womit die Anzahl
genau

|Ωα×β|ℵ×ℶ | =
|ℵ||ℶ|

lcm(|ℵ|, |ℶ|)
= gcd(|ℵ|, |ℶ|)

sein muss.

Wenn wir nun die Summe über alle ℵ ∈ Ωα und ℶ ∈ Ωβ nehmen, dann erhalten
wir die Formel aus dem Lemma.

32

	Abstract
	Grundlagen
	Primfaktorzerlegung
	p-adische Wertigkeit
	gcd und lcm
	Eulerfunktion
	Restklassen
	Gruppen
	Ringe
	Homomorphismen
	Primitive Elemente
	Ordnung
	Direkte Summe
	Die Direkte Summe und Ringe

	Einleitung
	Ein paar Beispiele

	Die Ordnung unter Homomorphismen
	Die Ordnung mod Primpotenzen
	Die Verbindung zwischen der Ordnung und Omega
	Die Ordnung mod Zweierpotenzen
	Ordnung für mod n
	|Omega|
	Anwendungen
	Struktur der Multiplikativen Gruppe
	Appendix
	Omega in AxB

